#### Towards Scheduling Virtual Machines Based On Direct User Input

#### Bin Lin Peter A. Dinda



Department of EECS Northwestern University

http://presciencelab.org

# Take-away points

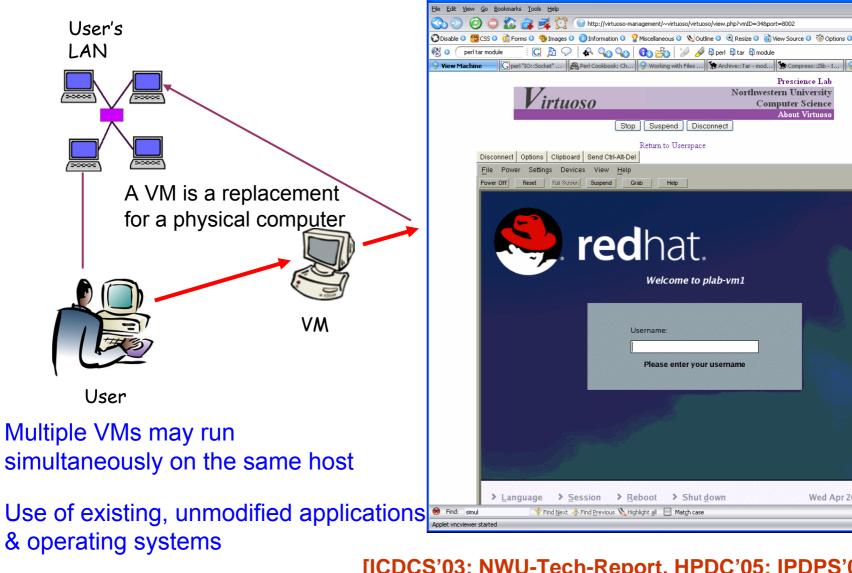
- Discovered high variation in user expectations of performance
- Developed interface that captures user variation for CPU scheduling in VM desktop replacement scenario
- Evaluated interface in extensive user study; finding it to be effective
- Currently extending direct user feedback model for other systems problems, including power management

# Outline

- Background
  - Virtuoso [http://virtuoso.cs.northwestern.edu]
  - User diversity
    - User comfort with resource borrowing [Gupta & Lin, HPDC'04]
  - Scheduling VM in Virtuoso
    - VSched [Lin, SC'05]
- Direct user input in VM scheduling
- User study
- Conclusions

# Outline

#### • Background – Virtuoso


- User diversity
  - User comfort with resource borrowing
- Scheduling VM in Virtuoso
  - VSched
- Direct user input in VM scheduling
- User study
- Conclusions

#### Virtuoso: VM-based Distributed Computing

| Ede Ede                                        | Virtual Machine Configuration - Mozilla Firefox<br>View <u>Go B</u> ookmarks Tools <u>H</u> elp |   |
|------------------------------------------------|-------------------------------------------------------------------------------------------------|---|
|                                                | Machine Configuration                                                                           |   |
|                                                | Prescience Lab                                                                                  |   |
|                                                | Virtuoso Northwestern University<br>Computer Science                                            |   |
|                                                | About Virtuoso                                                                                  |   |
|                                                | Name: default                                                                                   |   |
|                                                | CPU:                                                                                            |   |
|                                                | C Pentium 4<br>C Pentium III<br>C Pentium II                                                    |   |
|                                                | C Opteron                                                                                       |   |
|                                                | C Athlon64                                                                                      |   |
|                                                | Intel(R) Xeon(TM) CPU 2.00GHz                                                                   |   |
|                                                | CPU Speed                                                                                       |   |
| Orders a raw                                   | 6° 500 MHz                                                                                      |   |
|                                                | C 1.4 GHz                                                                                       |   |
| User machine                                   | C 2.4 GHz                                                                                       |   |
|                                                | Operating System                                                                                |   |
|                                                | © Redhat Linux 9.0                                                                              |   |
|                                                | C Windows XP Professional<br>C Windows XP Home                                                  |   |
|                                                | C Windows 2000 Professional                                                                     |   |
|                                                | C Debian Linux 3.1                                                                              |   |
|                                                | Memory                                                                                          |   |
| Storage Price /month                           | 6 128 MB                                                                                        |   |
| Storage Price /monun                           | C 256 MB                                                                                        |   |
| 37.5                                           | C 512 MB                                                                                        |   |
|                                                | C 1GB<br>C 2 GB                                                                                 |   |
| Running Price /hour                            | Harddrive Capacity (MB)                                                                         |   |
| 0.3096                                         | © 500MB                                                                                         |   |
| 0.3030                                         | CIGB                                                                                            |   |
|                                                | Register                                                                                        |   |
|                                                |                                                                                                 |   |
| Register Configuration (\$.05) Search Provider |                                                                                                 | 5 |

#### User's View in Virtuoso Model

View Machine - Mozilla Firefox



redhat. Welcome to plab-vm1 Please enter your username Session > Reboot > Shut down Wed Apr 26, 11 [ICDCS'03; NWU-Tech-Report, HPDC'05; IPDPS'06] 6

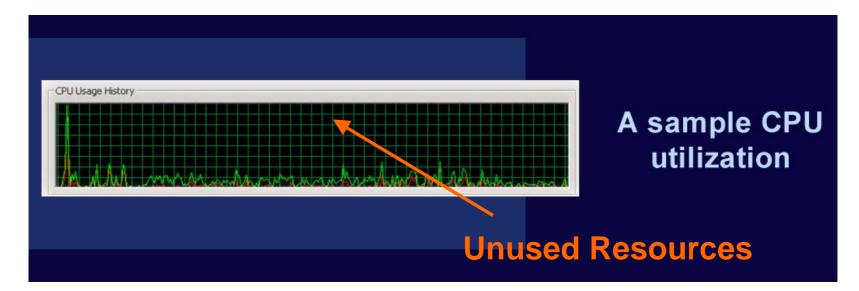
**?**]

Dengeos.com - Me...

Prescience Lab Northwestern University

> **Computer Science** About Virtuos

## Outline

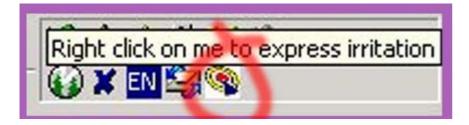

- Background
  - Virtuoso
  - User diversity
    - User comfort with resource borrowing [Gupta & Lin, HPDC'04]
  - Scheduling VM in Virtuoso
    - VSched
- Direct user input in VM scheduling
- User study
- Conclusions

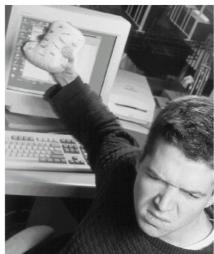
# Measuring and understanding user comfort with resource borrowing

- *HPDC'04*
- Goal: discover how aggressive resource borrowing systems like SETI@home can be
  - Or necessary resource share of desktop replacement virtual machine
- Extensive user study



#### **Observation and ideas**

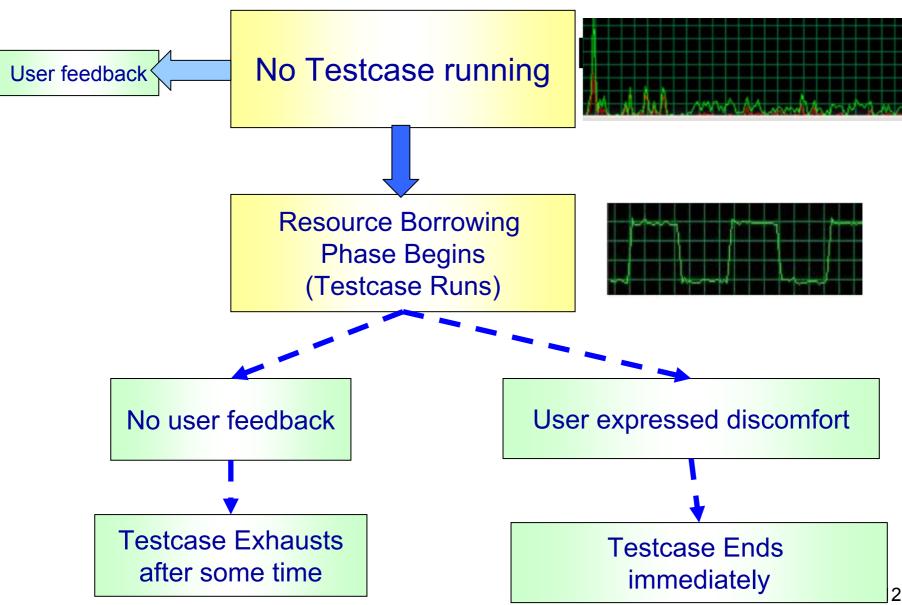




# Idea: Why not borrow the unused resources ?

**Problem: Performance Slowdown** 

#### Understanding User Comfort with Resource Borrowing

- What level of resource borrowing leads to user discomfort for significant fraction of users ?
- A system which emulates resource borrowing (CPU, MEM, DISK) and captures user feedback






#### The controlled study description

- 35 undergrad and grad students
- 1.5 hrs each
- Each user was assigned 4 interactive tasks to do
  - MS Word
  - MS Powerpoint
  - MS Explorer → searching and saving information
  - Quake III

#### Flowchart of Testcase

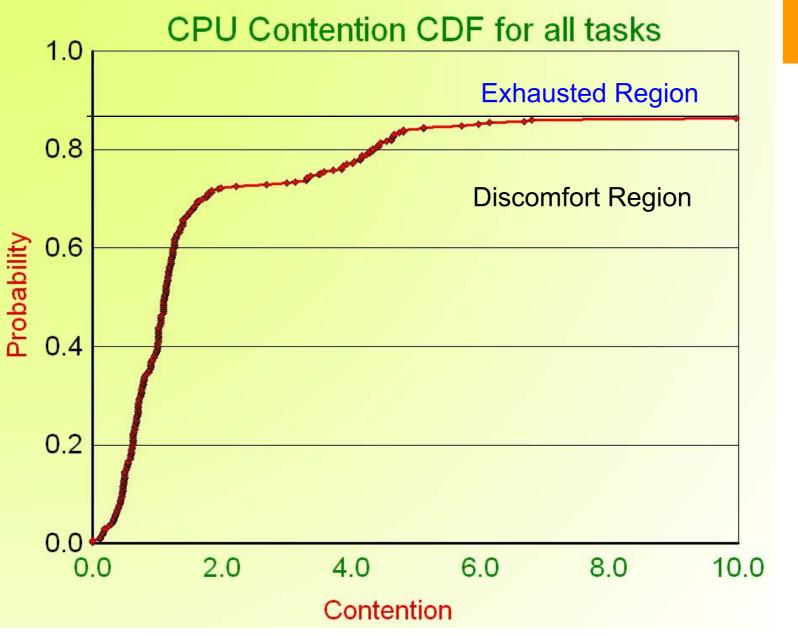


### **Resource Exercisers**

#### CPU Exerciser

 Contention describes the expected extra number of threads in ready queue

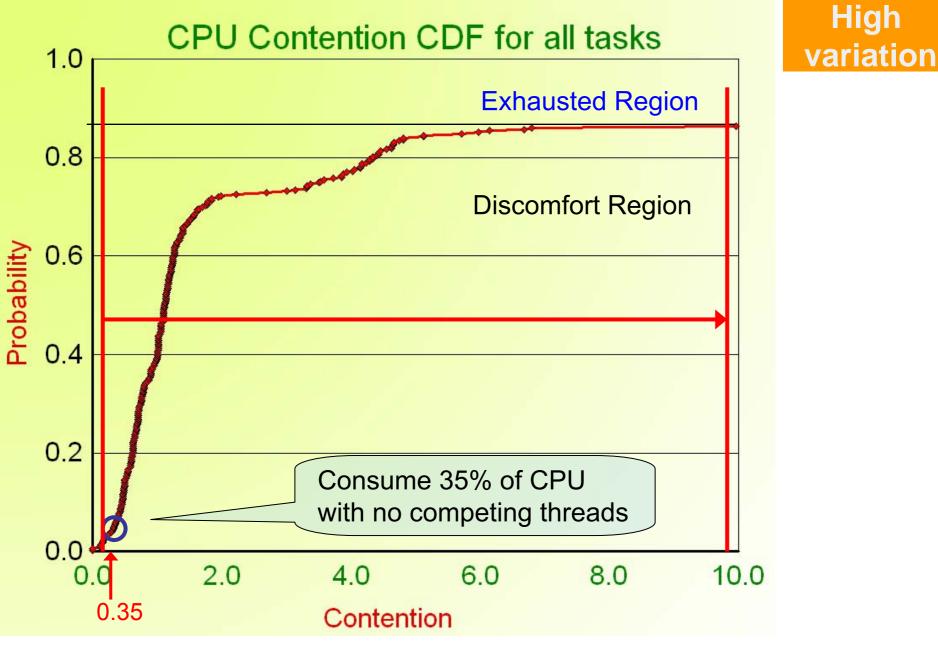



- Fractional resource borrowing using stochastic scheduling methods
- Validated to contention level of 10

#### Disk Exerciser

- Random seek and read/write in a large file (twice the memory)
- Validated to contention level of 7
- Memory Exerciser
  - Borrows a fraction of physical memory: from 0 to 1

#### Resource borrowing vs User Discomfort


- CDFs for discomfort contention level
- Not all contentions cause discomfort: exhausted region
- CDFs allow us to read %age of people discomforted for a given contention
  - Metric c<sub>0.05</sub> : At what contention do we discomfort only 5% of the people ?

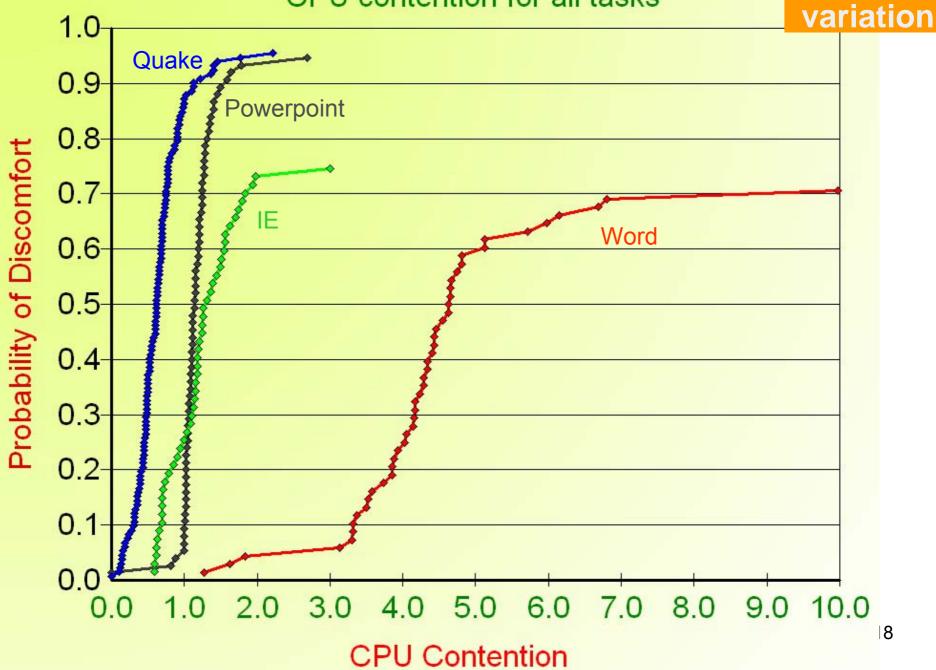


# High variation

#### Resource borrowing vs User Discomfort

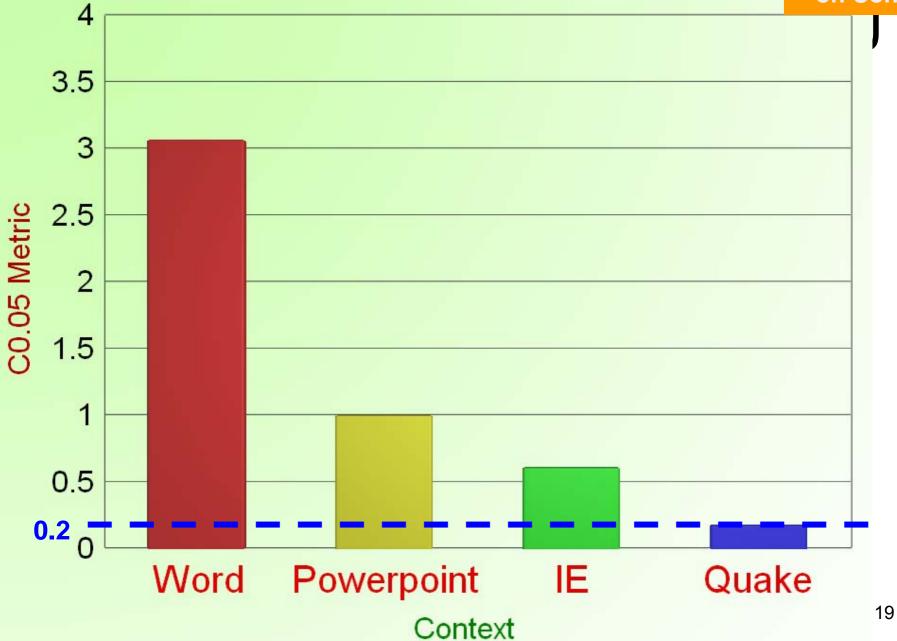
- CDFs for discomfort contention level
- Not all contentions cause discomfort: exhausted region
- CDFs allow us to read %age of people discomforted for a given contention
  - Metric C<sub>0.05</sub> : At what contention do we discomfort only 5% of the people ?




 $C_{0.05} = 0.35$  (aggregated over all applications)

#### 17

High


#### **CPU** contention for all tasks

High



#### Dependence on Context - CPU





### Conclusion

- Resources needed to keep a user happy are highly dependent on the application and on the user
- Direct user feedback may be useful (per-user tailoring of resource usage)

# Outline

#### Background

#### – Virtuoso

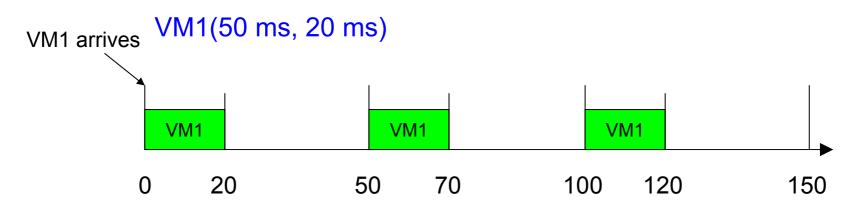
- User diversity
  - User comfort with resource borrowing [Gupta & Lin, HPDC'04]

#### - Scheduling VM in Virtuoso

- VSched [Lin, SC'05]
- Direct user input in VM scheduling
- User study
- Conclusions

#### Challenges For CPU Reservations

 Resource providers price VM execution according to <u>interactivity</u> and <u>compute rate constraints</u>


-How to express, validate, and enforce?

- A workload-diverse set of VMs
  - –How to schedule them on a single physical machine?

#### Periodic Real-time Scheduling Model

•Task runs for slice seconds every period seconds [JACM 1973]

(period, slice) Unit: millisecond



Time(millisecond)

#### Periodic Real-time Scheduling Model

- Task runs for slice seconds every period seconds
  - "1 hour every 10 hours", "1 ms every 10 ms"
    - Does NOT imply "1 hour chunk" (but does not preclude it)
  - Compute rate: slice / period
    - 10 % for both examples, but radically different interactivity!
  - Completion time: size / rate
    - 24 hour job completes after 240 hours
- Unifying abstraction for diverse workloads
  - We schedule a VM as a single task
  - VM's (slice, period) enforced

## Implementation - VSched

- Provides soft real-time (limited by Linux)
- Runs at user-level (no kernel changes)
- Schedules any set of processes
  We use it to schedule VMs (Type II VMM)
- Supports very fast changes in constraints
  - We know immediately whether performance improvement is possible or if VM needs to migrate

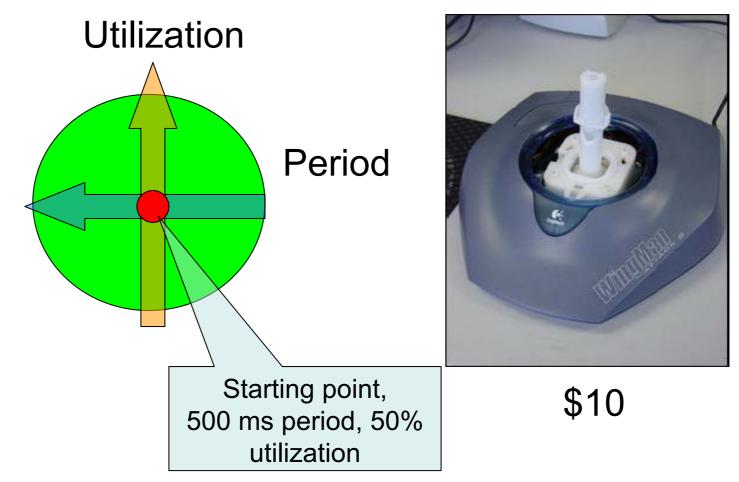
# Outline

#### Background

- Virtuoso
- User diversity
  - User comfort with resource borrowing [Gupta & Lin, HPDC'04]
- Scheduling VM in Virtuoso
  - VSched [Lin, SC'05]
- Direct user input in VM scheduling
- User study
- Conclusions

# How to choose the right (period, slice)

- Possible non-intrusive interface
  - Unused until the user is unhappy with performance
  - Instantly manipulated to change the schedule
  - GUI (showing cost)
  - Non-centering joystick


#### Interfaces



\$10 Non-centering joystick

\$250

### **Two-dimension** mapping



### Specific cost function used

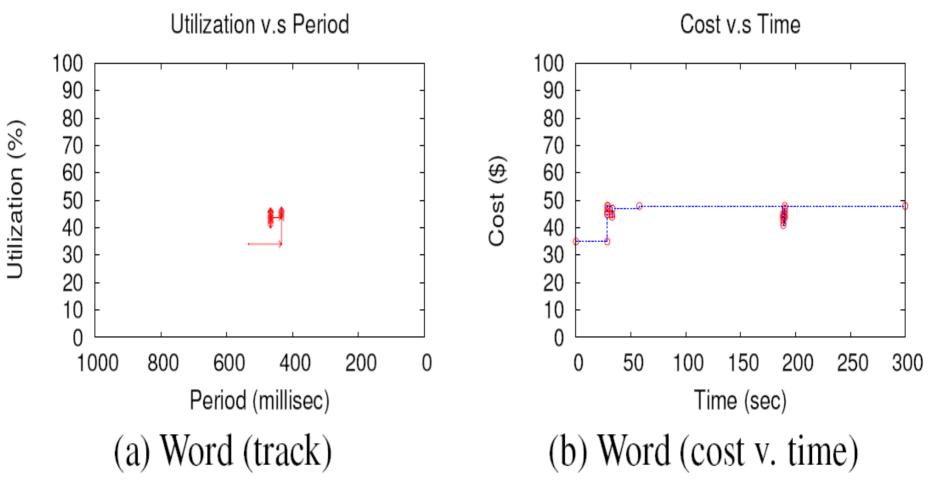
$$cost = 100 \times \left(\frac{slice}{period} + \beta \times \frac{overhead}{slice}\right)$$

. . . . . . . . . . . .

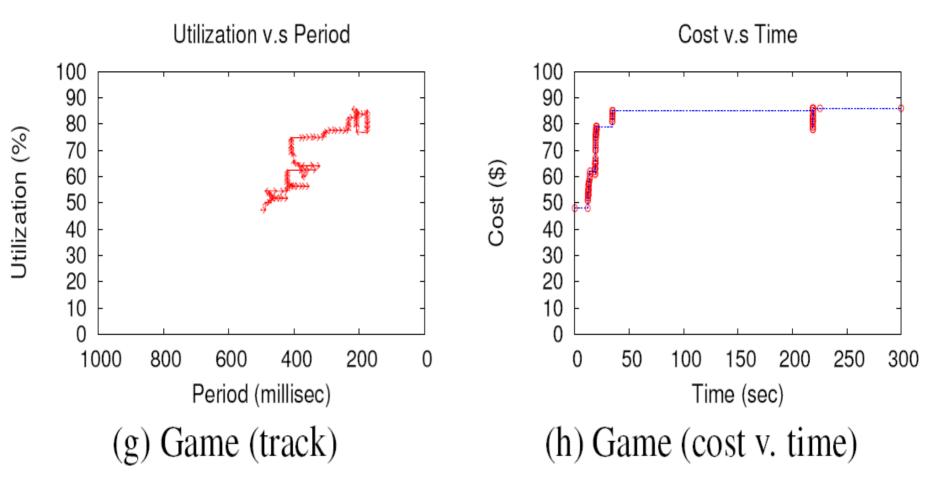
- Overhead: time to execute scheduling core.
- as slice declines, more time spent in VSched & kernel on behalf of the process.

### User study

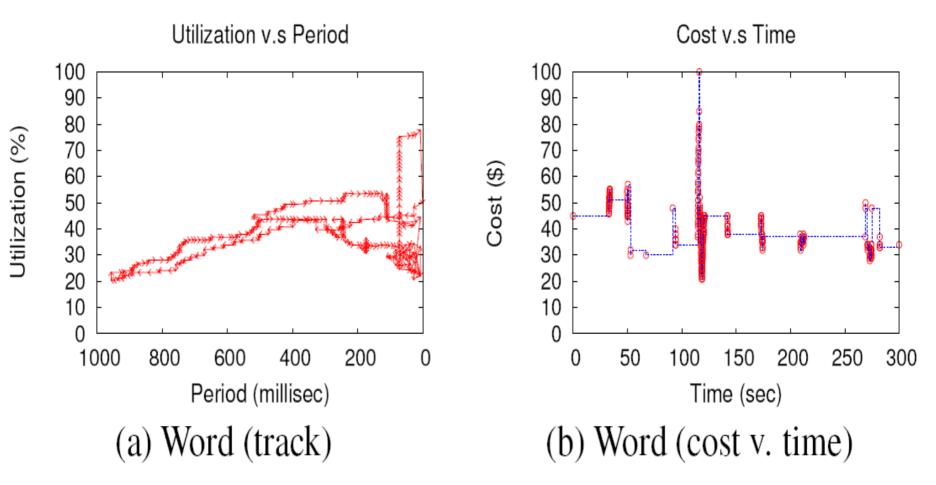
- 18 users
- User used Windows VM for Word processing, presentation creation, web browsing, and game playing
- Can end-users use our interface to find schedules for their interactive VMs that were comfortable?
- Can users trade off between cost and comfort using the interface?


### Testbed

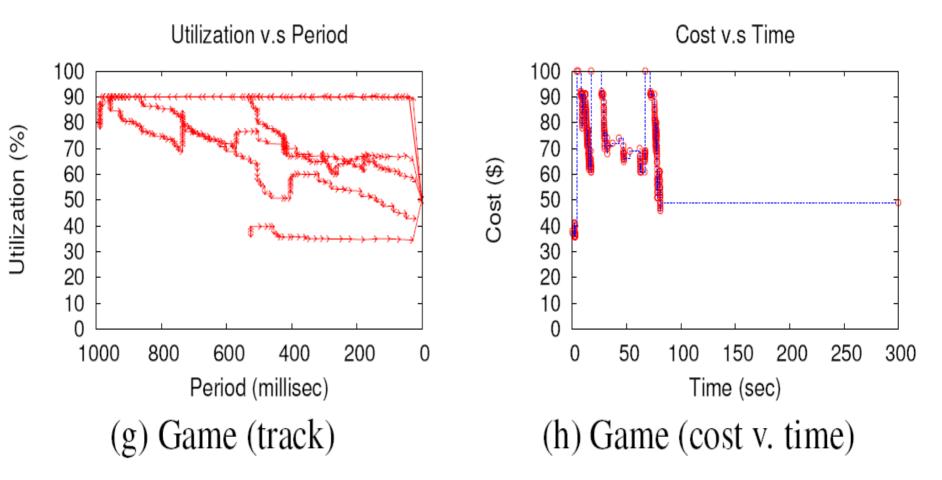
- Dell Optiplex GX270 (2 GHz P4, 512 MB, 80 GB, 100 mbit Ethernet)
- VMware GSX Server 3.1
- VSched server running as daemon
- VM running WinXP Pro
- \$10 joystick


#### Process

- Adaptation Phase I (8 mins): VM
- Adaptation Phase II (5 mins): Control
- 4 tasks (Word, Powerpoint, IE, Quake II)
- 3 subtasks (5 mins) per task
  - Comfort
  - Comfort and cost
  - Comfort and cost with perceived external observation
- Video-taping (mild deception, a common technique in psychological research)
- Questionnaire per subtask


# User A: Tracks, cost versus time (Word)




#### User A: Tracks, cost versus time. (Game)



# User B: Tracks, cost versus time (Word)



#### User B : Tracks, cost versus time. (Game)



#### Example questions

- Did you find that the joystick control was understandable in this application? (Y/N)
- Were you able to find a setting that was comfortable? (Y/N)
- If yes, what's the cost?

| Task       | Sub-task             | Avg  | Std  | Min | Max |
|------------|----------------------|------|------|-----|-----|
| Word       | II Comfort+Cost      |      |      |     |     |
|            |                      | 46.0 | 20.4 | 19  | 86  |
|            | III Comfort+Cost+Ext |      |      |     |     |
|            |                      | 48.4 | 20.7 | 19  | 84  |
| Powerpoint | II Comfort+Cost      |      |      |     |     |
|            |                      | 52.4 | 19.5 | 20  | 91  |
|            | III Comfort+Cost+Ext |      |      |     |     |
|            |                      | 52.3 | 19.2 | 18  | 87  |
| Web        | II Comfort+Cost      |      |      |     |     |
|            |                      | 49.6 | 22.7 | 15  | 90  |
|            | III Comfort+Cost+Ext |      |      |     |     |
|            |                      | 50.2 | 23.3 | 16  | 87  |
| Game       | II Comfort+Cost      |      |      |     |     |
|            |                      | 78.8 | 14.1 | 50  | 93  |
|            | III Comfort+Cost+Ext |      |      |     |     |
|            |                      | 76.5 | 14,9 | 49  | 91  |

L O W E S T C 0 S T

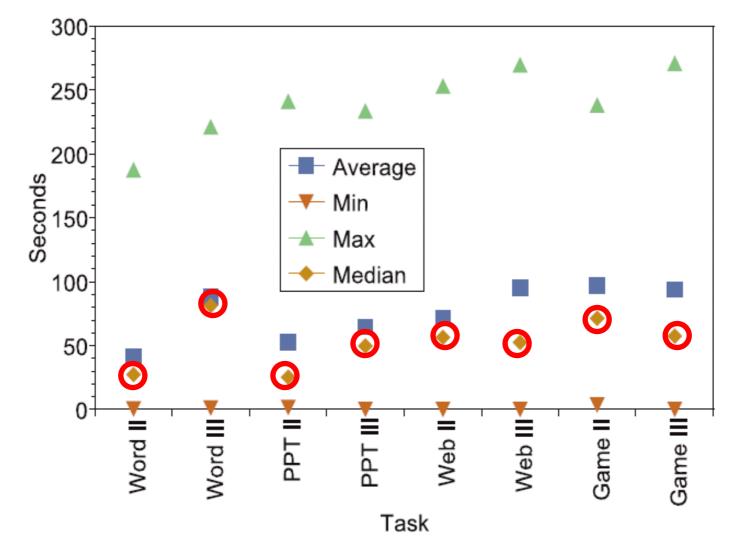
39

#### Results of the user study

- ✓ ≥ 89% of users understood our control mechanism
- ✓ ≥ 72% of users could use it to find a comfortable position
- ✓ ≥ 78% of users could use it to find a comfortable position that they believed was of lowest cost

#### (Providing 95% confidence intervals)

#### Results of the user study


- ✓ ≥ 89% of users understood our control mechanism
- ✓ ≥ 72% of users could use it to find a comfortable position (other 28%)
- ✓ ≥ 78% of users could use it to find a comfortable position that they believed was of lowest cost (other 22%)
- In both cases, numbers result from one user answering the question unintelligibly.

(Providing 95% confidence intervals)

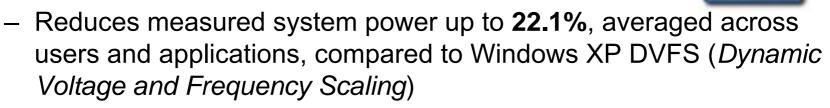
#### Results of the user study (cond.)

- Costs on average increase for applications with increasingly finer grain interactivity.
- Tremendous variation in acceptable cost among the users.
- Almost all users were able to find a setting that gave them comfortable performance.

# Duration to first encounter of lowest cost



#### Results of the user study (cond.)


- Median time for the user to find the setting of lowest cost that is comfortable for him is in the range from 25-80 seconds (it includes use of the application).
- Time between further interactions decline as the user is more familiar with the app/system combination.

#### Conclusion of this work

- Using VSched's joystick control, even a naive user can quickly guide the system to a schedule that simultaneously optimizes both for his comfort in using an application and for low cost.
- System can run more interactive users simultaneously, or allocate more time for long-running batch VMs.

#### Power Control in Modern Processors

- In-submission work by Lin, Mallik, Dinda, Memik, Dick
  - Tech report available from us
- User-driven Frequency Scaling (UDFS)
  - User presses button when annoyed with speed of computer
  - Button-press feedback drives model that drives frequency setting



- Process-driven Voltage Scaling (PDVS)
  - Customize frequency to voltage mapping to individual processor at every temperature



#### Related work: direct user input

- Buttons as on-screen objects; encapsulated code to enable tailoring of applications [Mclean, CHI'90; Dourish, ECSCW'99]
- Weighted fair queuing allows users to explicitly weight each of their processes
- Microsoft Windows; user specify scheduling class of a process
- Unix systems provide the "nice" mechanism
- •

. . .

- Require user understand scheduler to get good results
- Easy for a user to live-lock the system

### Take-away points

- Discovered high variation in user expectations of performance
- Developed interface that captures user variation for CPU scheduling in VM desktop replacement scenario
- Evaluated interface in extensive user study, finding it to be effective
- Currently extending direct user feedback model for other systems problems, including power management

## Thank you!

- Bin Lin's homepage: <u>http://www.cs.northwestern.edu/~blin</u>
- Bin Lin, Peter Dinda, *Putting the User in Direct Control of CPU Scheduling*, Tech Report NWU-EECS-06-07, EECS, Northwestern University
- Group project webpage: <u>http://virtuoso.cs.northwestern.edu</u>
- Presciencelab webpage: <u>http://presciencelab.org</u>