CHARACTERIZING AND MODELING USER ACTIVITY ON SMARTPHONES

Alex Shye, Ben Scholbrock, Gokhan Memik, Peter A. Dinda { shye, b-scholbrock, g-memik, pdinda } @northwestern.edu

Part of the Empathic Systems Project - empathicsystems.org Department of Electrical Engineering and Computer Science Northwestern University

Overview

Smartphones exist largely to serve the user. They provide services as demanded, such as communication and media playback/browsing, and act as a personal gateway to the internet. From a designer's perspective, the importance of a single component, or a single application, may be difficult to determine, since the actual workload is defined by end users.

To better understand how people use these new devices, we developed and distributed a logging application called NU JamLogger.

- •Android G1 Smartphone users downloaded app
- •Logs collected anonymously over 6 months
- •Data from 25 most-logged users considered
- •Represents over 1300 days of logged phone usage

- 1242164916974 : CPU_Pillisation 51.76 37.16 14.20 12421649910915 : Battery 3882 2 1242164991095 : Load_Awg 2.31 2.81 2.63 2 192 653 1242164910968 : Cell_Traffic 0 89 1242164918091 : CPU_Pillisation 69.11 45.54 3.57 1242164918091 : CPU_Pillisation 69.11 45.54 3.57 1242164918198 : CPU_Pillisation 69.11 45.54 3.57 1242164918185 : Load_Awg 2.29 2.80 2.63 1 192 453 1242164918185 : Phone_Data_Activity_Mone 1242164918185 : Phone_Data_Activity_Mone 1242164919185 : CPU_Preq 383 124216491928 : CPU_Preq 383 124216491928 : CPU_Preq 383 124216491933 : Load_Awg 2.29 2.80 2.63 1 192 453 124216491933 : Battery_3802 2

The Importance of Activity

- A small amount of active time (11%) represents a large amount of energy consumed (54%)
- · The display and CPU account for half of the active energy
 - The consumer OS does not support frequency scaling, and does not include display power management tools
 - Most users studied do not use downloadable power management tools and rarely adjust screen brightness manually

Power Measurement

- · Power approximated from logs
- · Model built using Linear Regression on power measurements of the G1
- Details described in previous work [1]

Traffic Patterns

- · There is a strong relationship between network traffic and time of day
- This holds for the aggregation of users (top), as well as individual users (bottom)
- Useful for network resource provisioning

Other Observations

- · Users in the study tended to charge their battery every day
 - · Top chart on right shows count of sessions (log scale) versus hours between charge (linear scale)
 - Most sessions between charges were less than 20 hours
 - In 20% of the sessions longer than 4 hours, the phones were used until the "low power" indicator was raised
- The CPU tended to be either very lowly utilized (< 10%) or completely utilized (100%)
- Bottom chart shows PDF of CPU utilization samples

References:

[1] Alex Shye, Ben Scholbrock, Gokhan Memik. Into the Wild: Studying Real User Activity Patterns to Guide Power Optimizations for Mobile Architectures. In proceedings of the 42nd IEEE/ACM International Symposium on Microarchitecture (MICRO). New York, NY. December 12-16, 2009.