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Introduction

» Many techniques can save power in laptops

» The effect on user satisfaction has not been well studied
» We analyze how power saving affects user satisfaction
» Using sensors, can predict user satisfaction with over 80% accuracy

Experimental Setup

User studies

» Users are attached to biometric sensors

» Play racing game for 45 minutes

» While playing game, ‘annoyance events’

» Annoyance events reduces the computer’s power
usage by a specific Wattage

» Goal: detect If the user’s biometric data changes
due to performance changes

Annoyance events
» CPUFreq - Processor frequency
» CPUULIIl - Processor utilization
» ScreenDim - Screen brightness (instantaneous)
» ScreenGradual - Screen brightness (gradual)

(a) Accelerometer + GSR

TWINTTE

(b) Keyboard Force Sensors

(C) Head-mounted Eyetracker

Annoyance Events
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Active annoyance events

ESP (Empathic Systems Project)

Statistical Analysis

Goal: verify

that we can detect

a change in the

sensor data before Window Window
Sl (data after reset) DSl (data after annoy)

and after each

annoyance event

No annoyance: 25-40 sec Annoyance active: 30 sec

Method:
1. Post-process raw sensor data from 'annoying’ events into sensor metrics
2. Group metric data around annoyance events for multiple windows/offsets
3. Take the standard deviation, mean, and median of above groups
4. Run a 2-tailed t-test comparing data from before/after annoyance
5. p-value <0.1: likely Is a change in sensor data due to annoyance event

Metric Sensor Location Metric Description

AccelMag Wristband sum of squares of X, Y, and Z accelerometer axes
DeltaGSR Wristband change in GSR value since the last sensor reading
Keypress Software time since the last keyboard button press
MaxForce Keyboard force sensors | largest current value from the force sensors

NormalMaxForce | Keyboard force sensors | same as MaxForce, but normalized to each key’s highest force read-
ing

PupilMovement | Head-mounted change in position of the pupil since the last pupil reading

PupilRadius Head-mounted the radius of the pupill

Statistical Analysis Results

» T-test graphs compare data around ‘annoying’ events

» Sensors have varying ‘lag time’ (offset)

» Smaller windows are generally more effective than larger ones
» Additional analysis in paper
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(c) NormalMaxForce (d) PupilMove
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Prediction System

Goal: Predict when the user is (and isn’t) annoyed

Raw sensor data

Build and verify models:
WEKA Data Mining Platform

v

Generate attributes
(60 per sensor metric)

Label Data

Prediction Results

User Study 1
» 20 users
» Users verbally indicate when performance worsens
» 520 total annoyance events
» User indicating annoyance labels data 'true’

User Study 2
» Purpose: Indicating annoyance may affect sensor data
» 5 users
» Users don’t indicate when performance worsens
» 100 total annoyance events
» Use subset of annoyance events
» Label data w/ Study 1 annoyance frequencies
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Conclusions

Annoyance)

» Power saving generally less noticeable w/ multiple simultaneous technigues
» \We can statistically differentiate between when user is and isn’t annoyed

» Can predict user annoyance with up to 80% accuracy w/ no user indication
» Provides new routes for power optimization
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