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ABSTRACT
We introduce a new technique for determining a mobile
phone’s indoor location even when Wi-Fi infrastructure is
unavailable or sparse. Our technique is based on a new
ambient sound fingerprint called the Acoustic Background
Spectrum (ABS). An ABS serves well as a room finger-
print because it is compact, easily computed, robust to tran-
sient sounds, and surprisingly distinctive. As with other
fingerprint-based localization techniques, location is deter-
mined by measuring the current fingerprint and then choos-
ing the“closest”fingerprint from a database. An experiment
involving 33 rooms yielded 69% correct fingerprint matches
meaning that, in the majority of observations, the finger-
print was closer to a previous visit’s fingerprint than to any
fingerprints from the other 32 rooms. An implementation of
ABS-localization called Batphone is publicly available for
Apple iPhones. We used Batphone to show the benefit
of using ABS-localization together with a commercial Wi-
Fi-based localization method. In this second experiment,
adding ABS improved room-level localization accuracy from
30% (Wi-Fi only) to 69% (Wi-Fi and ABS). While Wi-Fi-
based localization has difficulty distinguishing nearby rooms,
Batphone performs just as well with nearby rooms; it can
distinguish pairs of adjacent rooms with 92% accuracy.

Categories and Subject Descriptors
H.3.4 [Information storage and retrieval]: Systems and
software.

General Terms
Algorithms, experimentation, measurement, performance
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1. INTRODUCTION
The goal of our work is to allow a basic mobile device,

such as a smartphone, to cheaply and quickly determine
its location to the resolution of a single room. The mobile
device may not have any specialized hardware, and there
should be minimal, if any, dependence on computational or
network infrastructure. More specifically, we seek a system
that computes a

fingerprint → roomlabel

mapping where fingerprint represents a measurement of the
room the mobile device is currently in, and roomlabel repre-
sents a semantically-rich representation of the room. Finger-
print acquisition and mapping to room labels must be rapid.
Fingerprints and room labels must be small so that it is pos-
sible to cache or prefetch them despite the device’s limited
memory. It must be possible to acquire a fingerprint and do
the computation (using cached fingerprints) on the mobile
device even if wireless communication is not presently possi-
ble. Above all, the fingerprint computation must be reliable
in the presence of noise and environmental variations. In
summary, a location fingerprint should be DECENT:

• Distinctive . . . . . . . . . . . . . . . . . . . . . . . . . (see Section 5.1)
• rEsponsive . . . . . . . . . . . . . . . . . . . . . . . . . (see Section 5.2)
• Compact . . . . . . . . . . . . . . . . . . . . . . . . . . . (see Section 5.2)
• Efficiently-computable . . . . . . . . . . . . . .(see Section 8.3)
• Noise-robust . . . . . . . . . . . . . . . . . . . . . . . (see Section 5.3)
• Time-invariant . . . . . . . . . . . . . . . . . . . . . (see Section 5.4)

The Acoustic Background Spectrum (ABS) technique we
describe here meets these requirements. The intuition be-
hind ABS-based localization is that modern life is full of
noises: computers whirr, lights buzz, and air condition-
ers blows. The field of architectural acoustics tells us that
a room’s geometry and furnishings strongly affect what is
heard [18]. That is, the persistent acoustic drivers of a room,
and the room’s impulse response combine to form a distinct
“sound” of the room. While it is obvious that a lecture hall
sounds different than an office, we show that two otherwise
similar-looking rooms are also very likely to have different
persistent acoustic characteristics, even if the spaces may
sound similar to a human listener.
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Using ABS, which is implemented in our publicly available
Batphone application1, an Apple iPod is able to determine
what room (and building, etc.) it is in using a compact
1.3 kB representation of the room’s acoustic spectrum as a
fingerprint. The fingerprint is acquired within 10 seconds
using the built-in microphone and by the eleventh second a
list of room descriptions appears, which is ranked by likeli-
hood of being the current room. Users can easily contribute
new (fingerprint , roomlabel) pairs from the application.

The problem of indoor localization has been well-studied,
but no ideal, all-purpose solution exists. Techniques based
on observations of signals from radio beacons (such as Wi-
Fi/cellular base stations or GPS satellites) have shown the
most promise. However, these techniques are hampered by
the fundamental inconsistency of indoor radio wave propa-
gation caused by changes in the physical environment and
interference from other electronic devices. Even the num-
ber of users connected to a base station affects the observed
signal strength. Various studies have shown that Wi-Fi sig-
nal strengths vary significantly throughout the day and that
these variations are not uniform (the base stations vary inde-
pendently) [23, Figure 1] [13, Figure 7]. Signals from cellular
base stations seem to be much more temporally-stable than
Wi-Fi, however they are much less densely spaced, leading
to localization difficulties.

Despite these observation uncertainties, researchers have
built Wi-Fi-localization systems capable of 95% room-level
accuracy in ideal, static environments [13, 32]. However,
real usage environments generally make the problem harder
in one of two ways: access point density may be low or oc-
cupancy variations may cause long-term signal variations.
In either case, the reported Wi-Fi localization accuracy falls
below 70% [13, Figures 6 & 8]. In addition, developing coun-
tries typically lack Wi-Fi infrastructure, but low-end mobile
phones are widespread. Such devices have only a cellular ra-
dio and a microphone with which to sense the environment.

In contrast to radio-based techniques (Wi-Fi or cellular),
our ABS technique works even if no radio signals are avail-
able if a sufficient collection of fingerprints is cached on the
mobile device. Furthermore, the errors of ABS-based local-
ization are different from those of radio-based localization,
and thus the techniques can be combined for better perfor-
mance than either one alone. In our experiments, the Bat-
phone implementation of ABS improves the accuracy of the
commercial Skyhook Wi-Fi-based localization service used
by the iPod from 30% to 69%. The nature of the errors
for radio-based localization is different from that for ABS-
based localization: radio-localization errors tend to confuse
nearby rooms, while ABS-based localization errors are gen-
erally not geospatially clustered. For example, using ABS
alone allows us to distinguish adjacent rooms with 92% ac-
curacy. The consequence is that user knowledge of general
location is likely to increase the probability of selecting the
correct room from a top-k list when ABS-based localization
is used.

There is prior work on using acoustics for localization; a
detailed comparison is given in Section 2. SurroundSense
is the closest to our work [5]. It combines multiple sensors,
including acoustic ambience measurement, visual ambience,
and cellular-based localization to determine location. Sur-

1Users of iPhones, iPads, and iPod Touch models with mi-
crophones can search for “Batphone” in Apple’s app store.
iOS version ≥ 4.0 is required.

roundSense’s acoustic fingerprint is a compact histogram of
a sound recording from the time domain, while ABS uses a
compact spectral representation. Furthermore, our focus is
on exclusively sound-based localization, and the ABS tech-
nique provides dramatically higher performance than the
histogram technique when only the microphone is available.
Another work, SoundSense [19], uses spectral features to
classify sounds observed on a mobile device. Our work dif-
fers in that it targets localization rather than activity de-
tection. Accordingly, we focus on background sounds while
SoundSense focuses on transient sounds.

In summary, our contributions are as follows:

• We introduce the Acoustic Background Spectrum (ABS)
fingerprint, a new acoustic ambience fingerprint that is
compact, easily computed, robust to transient sounds,
and able to distinguish remarkably similar rooms. ABS
allows us to build the first accurate localization system
based solely on microphone sensing.

• We introduce the Linear Combination Distance for
combining localization fingerprints which, when ap-
plied to ABS and Wi-Fi, dramatically improves indoor
localization accuracy over each individual method.

• We describe a trace-based simulation system that al-
lows us to study and evaluate different acoustic lo-
calization techniques, and different parameters for an
acoustic localization technique, using the same set of
real acoustic traces (recordings). ABS was developed
using this system and a collection of 264 acoustic traces,
which we have made publicly available [1].

• We describe and make publicly available Batphone,
an Apple iPhone implementation of ABS-based local-
ization that demonstrates the technique’s real-world
performance and its low overhead. Batphone also in-
cludes the option to use Wi-Fi-based localization and
combined ABS/Wi-Fi localization.

The rest of this paper is structured as follows. Section 2
describes related work. Section 3 describes the new Acoustic
Background Spectrum (ABS) room fingerprinting technique.
The ABS technique requires that we select values for certain
parameters. We did so through trace collection and simu-
lation. Section 4 describes our traces and simulator, while
Section 5 describes our study to determine appropriate ABS
parameters. This section also provides an initial evaluation
of the performance of ABS and sensitivity to parameter vari-
ation. Section 6 describes the implementation of ABS within
Batphone, including its integration with Wi-Fi-based local-
ization. Section 8 evaluates the performance of Batphone.
Section 9 concludes the paper.

2. RELATED WORK
Indoor localization has been well-studied in the mobile

computing community. A user may be carrying a sensing
device (such as a mobile phone) or may be moving within a
field of fixed sensors. In either case, knowledge of the user’s
position can be useful for several applications. Generally, ap-
plications that depend on user location are called location-
based services (LBS). Past applications have included en-
vironment interaction [3], reminders [11, 20], targeted ad-
vertising [5], tour guides [2, 8], navigation aids, and social
networking (e.g., Foursquare and Gowalla).

Outdoor localization is well solved by GPS, but indoor lo-
calization remains a challenge in many cases. A wide variety
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of solutions have been proposed. The early work of Want
et al. [29] and several subsequent works [30, 3, 25, 6, 27]
require that sensors or beacons be installed throughout the
environment. This requirement is onerous, but the resulting
localization accuracy and reliability are generally excellent.

More recent work has focused on using existing cellular
and/or Wi-Fi base stations as radio beacons for localiza-
tion. In these systems [13, 32, 15], location is determined
by observing the signal strength of Wi-Fi access points that
are within range. Several efforts have been made to identify
semantically-meaningful “places” rather than using simple
room labels or coordinates. Kim et al. [17] give a recent ex-
ample; they use the appearance and disappearance of radio
base stations to indicate entrance into and departure from a
place. Other place identification works cluster a time series
of location coordinates (obtained by GPS or radio) to iden-
tify places, [16]. The Wi-Fi localization approach of Teller et
al. eliminates the need to perform building surveys to build
the location database [24]. There is even a commercial effort
that uses wardriving to build a localization system2.

Haeberlen et al. [13] reported perhaps the most accurate
Wi-Fi-localization results to date (along with Youssef et
al. [32]). Using a Gaussian distribution to statistically model
signal strength observations, they reported 95% accuracy
over a set of 510 rooms. However, indoor localization is not
a solved problem. Looking more carefully at the results, we
note that their environment had a dense Wi-Fi infrastruc-
ture: at least 5 base stations were in range at all times. Also,
their test and training data were drawn from the same three-
minute survey interval. When considering training and test
data from different times of day [13, Figure 8], 70% accuracy
was achieved, with most observed errors falling within 5.5
meters. We believe that acoustic localization can close this
remaining accuracy gap.

Although Wi-Fi-localization is useful, many areas of in-
terest are not served by Wi-Fi and other areas are served by
only a single long-range base station. In the latter case, tri-
lateration is impossible and fingerprinting gives only a very
coarse location. There are also some privacy concerns with
radio-based localization. Wi-Fi and cellular radios include
digital identifiers (such as the MAC address for Wi-Fi) which
allow the infrastructure operator to track users’ positions
(unless users take special privacy precautions). Acoustic
techniques require no such identity broadcasting.

Beyond radio.
Recently, several localization systems have been built with-

out the use of radio. For example, Constandache et al. use
a mobile phone’s accelerometer and compass for localiza-
tion [9]. Woodman and Harle [31] used a foot-mounted ac-
celerometer to locate a person within a previously-mapped
building. The main disadvantage of these dead-reckoning
approaches is that they can never determine the absolute
location; only changes to position are captured. There-
fore, small errors add up over time to create significant lo-
cation drift. Acoustic techniques could complement these
approaches.

Scott et al. present perhaps the first acoustic localization
work; they place microphones at key locations and users
snap their fingers to alert the system of their presence [27].

2http://www.skyhookwireless.com

symbol meaning optimal value Batphone
Rs sampling rate 96 kHz 44.1 kHz
nspec spectral resolution 2048 bins 1024 bins
nfp ABS size 299 bins 325 bins
tspec frame size 0.1 s 0.1 s
tsamp sampling time 30 s 10 s

frequency band 0–7 kHz 0–7 kHz
window function Hamming rectangular

Figure 1: System parameters and the values chosen
for the Batphone implementation. Section 5 shows
the effect of altering these parameters.

We previously used an ultrasonic sonar sensing system to
silently detect the presence of users at computers [28].

Azizyan and Choudhury (SurroundSense) use a combina-
tion of sensors (the microphone, camera, and accelerome-
ter on a mobile phone) to distinguish between neighboring
stores in shopping malls [5]. Their problem is made easier
by the fact that neighboring stores typically offer different
services and therefore a different ambience (including sound,
lighting, and decor). Their acoustic processing is straight-
forward: it considers only audio sample amplitude distribu-
tion as a fingerprint. Hence, they distinguish between stores
with different loudness characteristics. They report that au-
dio alone did not give good localization accuracy; however,
it did work well as the first stage in their multi-sensor local-
ization method.

Other work has used different features to classify ambient
sounds. Lu et al. present a framework called SoundSense
for classifying sound events recorded on an iPhone and give
two examples of its use [19]. They have an audio feature ex-
traction pipeline similar to that used in speech recognition.
SoundSense is ill-suited to localization because it ignores
quiet frames [19, Section 4.1.2] and its audio features are
tailored to transient sounds rather than background sounds.
However, if a location can be characterized by one or more
frequent, repeating, transient sounds then we expect that
SoundSense could be used to aid localization. Our work fo-
cuses on persistent sounds and we deal primarily with quiet
environments.

A common goal of related work in the audio signal pro-
cessing community is to assign one of perhaps a few dozen
labels to a recording. Sound classes typically correspond
to places such as street, nature, construction, car, restau-
rant, office, or kitchen. Standard audio features such as the
mel-frequency cepstral coefficients [10], zero-crossing rate,
and spectral centroid are used. The system of Eronen et
al. performed only slightly worse than human listeners [12].
Chu et al. achieved similar performance using the match-
ing pursuit (MP) signal decomposition [7]. Our work differs
from the above because its goal is not to assign semantic de-
scriptors to recordings as people would, but rather to match
previously-learned, specific location labels to recordings.

3. ACOUSTIC BACKGROUND SPECTRUM
Our localization scheme is based on the Acoustic Back-

ground Spectrum (ABS), a new ambient sound fingerprint.
The design of the ABS draws from common acoustic signal
processing techniques. Figure 2 gives an overview of how an
ABS is calculated. All the parameters associated with the
technique are listed in Figure 1. Our scheme works by first

157



calculating the ABS of the room (Sections 3.1 and 3.2) and
then classifying the room by comparing this ABS with the
existing, labeled ABS values in the database (Section 3.3).
We now describe each step in detail.

3.1 Spectrogram representation
The first step of our localization technique is recording an

audio sample of length tsamp. In the next several steps, we
transform this signal into a time-frequency representation
called a power spectrogram. This involves

1. dividing the recording into frames of length tspec,

2. multiplying each frame by a window function vector,
which reduces the signal magnitudes near the frame
boundary, and

3. computing the power spectrum of each frame, which
involves

(a) applying a fast Fourier transform (FFT) of reso-
lution 2× (nspec − 1),

(b) throwing away the redundant second half of the
result, leaving nspec elements, and

(c) multiplying the result elements by their complex
conjugates, giving the power.

These are the standard signal processing steps for com-
puting the power spectrogram of a discrete, real-valued sig-
nal [22, 26]. Its computation is efficient, with most steps
requiring just a scan of the Rstsamp samples and the major-
ity of time spent computing the tsamp/tspec FFTs, giving a
runtime complexity in the class

Θ

„
tsamp

tspec
(Rstsamp + nspec log nspec)

«
.

After the spectrogram is calculated, we filter out the fre-
quency band of interest by simply isolating the appropriate
rows. The nspec bins of the original spectrogram span the
range up to the Nyquist frequency of Rs/2. If we are fil-
tering out the 0–7 kHz band, as indicated in Figure 1, the
number of bins retained is

nfp = round

„
7 kHz
Rs/2

nspec

«
.

The spectrogram quantifies how the frequency content of
the recording varies over time. Sounds that are persistent
contribute equally to all of the time columns of the spectro-
gram. On the other hand, relatively short, transient sounds
contribute only to a few time columns. We will next describe
how to use this difference.

3.2 Transient noise rejection
After the spectrogram is computed, we apply a new method

for extracting a noise-robust spectrogram summary vector.
Intuitively, we would like to filter out transient sounds so
that the fingerprint is time-invariant. In other words, we
would like to extract the background sound levels. As shown
in Figure 2, we accomplish this by choosing one of the small-
est values observed for each frequency during the sampling
window. However, the absolute minimum value is sensi-
tive to outliers caused by noise and signal processing arti-
facts. Instead we choose a value near the minimum, the
5th-percentile value (p05). We expect that transient noises

lasting for less than 95% of the sampling window will be ab-
sent from the p05 value since such noises will be manifested
as additive features within the upper 95% of the sorted val-
ues. Choosing the p05 value involves either sorting or us-
ing a linear-time selection algorithm (such as quickselect)
on each of the spectrogram rows. Thus, the transient noise
rejection step is less computationally complex than the spec-
trogram calculation step; using linear-time selection, it is in
Θ(nfptsamp/tspec). We sort the rows individually since it is
more likely that each row will be at least 5% quiet than the
full spectrum being quiet 5% of the time. The results in
Section 5.3 show that the 5th-percentile value gives better
performance than the mean, minimum, or other percentile
values.

Scaling and normalization.
The final step in computing the ABS is to compute the

logarithm of the spectrogram summary vector. This puts
the fingerprint in decibel (dB) units, which is the standard
practice in audio signal processing. We validated the benefit
of this step via simulation.

Afterward, the fingerprint may optionally be normalized.
We do this by dividing the ABS vector by its median value.
Ideally, normalization would not be necessary. However,
during our experiments, various hardware gain levels were
adjusted to prevent clipping in loud rooms; this made nor-
malization necessary. We expect the median value of the
spectrum to remain constant among rooms with different
levels of transient noise if and only if those transients are
narrow-band. Empirically, this seemed to be the case.

3.3 Classification
After the ABS room fingerprint is calculated, it can be

compared to previously-observed fingerprints to determine
the location. We solve this classification problem via super-
vised learning. We assume a database of room fingerprints is
available where each fingerprint is labeled with a room iden-
tifier. The problem at hand is to label the currently-observed
room fingerprint. To do this, we choose a distance metric for
comparing room fingerprints. In particular, we use the vec-
tor Euclidean distance (the city block or Manhattan distance
was also evaluated, as shown in Figure 8(b)). We then use
the simple nearest-neighbor method of classification. This
means that we choose the label of the previously-observed
room fingerprint with smallest Euclidean distance from the
current observation. This can be thought of, equivalently,
as choosing the sample with smallest root mean square de-
viation.

Formally, assuming a set of training pairs (a database)

( �fpi, roomlabel i) ∈ T

and a new testing fingerprint �fptest, the classifier chooses

roomlabelbest = argmin
( �fpi,roomlabeli)∈T

vuut
nfpX

j=1

(fpi[j]− fptest[j])
2.

Nearest-neighbor classification is required each time a lo-
cation estimate is desired; the Batphone implementation
does this operation every two seconds. Because the finger-
print space has high dimensionality (nfp

∼= 300), finding the
nearest neighbor can become a bottleneck: we must scan
through each fingerprint in the database and compute its dis-
tance to the observed fingerprint. This most straightforward
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Figure 2: Acoustic Background Spectrum fingerprint extraction.

approach is clearly not scalable as the database grows to
millions of fingerprints. However, nearest-neighbor query la-
tency was imperceptible on Batphone when using a database
of a few hundred fingerprints. In future work, we antici-
pate using a combination of geospatial database queries on
a server backend and client-side caching and prefetching to
deal with database scaling. We could also use coarse-grained
information, such as nearby base station identifiers, to cat-
egorize signatures to reduce the search space.

It is important to point out that the problem of finding
nearest neighbors is common to most fingerprint-based lo-
calization approaches. This problem is widely studied and
ABS comparison can benefit from advances in the field. As
the dimensionality of the fingerprint is reduced, the problem
becomes easier. As we describe in Section 5.2, ABS finger-
prints continue to provide good accuracy even when nfp is
reduced to 19.

4. TRACE COLLECTION AND SIMULATION
At the onset of this project we speculated that acoustics

could be used to identify rooms, but we did not know which
acoustic features would be most useful. We used an acoustic-
trace-collection approach to gather the data necessary to
evaluate acoustic localization. We visited 33 rooms in the
Technological Institute and Ford Design Center buildings on

the campus of Northwestern University while carrying the
recorder shown in Figure 3(a), mounted on a microphone
stand. The experimenter moved the recorder to four posi-
tions in the rooms, each time capturing a 30 second WAV file
(24-bit 96 kHz). Stereo recordings were captured, but only
the left-channel data was used. Trace collection spanned sev-
eral weeks, and each room was visited on two different days,
giving a total of eight observations per room. We recorded
various types of rooms, as shown in Figure 4. In our ex-
periments, we did not observe any significant correlation
between localization accuracy and room type or size. We
included all the rooms we encountered in those two build-
ings that were unlocked and which we could access without
disrupting class and work activities. Hence, the majority of
our samples are from empty, quiet classrooms (Section 5.3
deals with noisy rooms). We did not exclude any samples
after seeing the results, or for any other reason. Our traces
are publicly available on the project web site [1].

Collecting these traces allowed us to simulate the per-
formance of acoustic localization while varying several sys-
tem parameters. In particular, capturing raw, unprocessed
recordings gave us the flexibility to study the effects of ap-
plying various processing techniques to the same data. The
basic simulation approach was to test system performance
when observing each of the recordings in turn, assuming
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(a) Zoom H4n (b) Apple iPod Touch

Figure 3: Experimental platforms. (a) The Zoom
H4n handheld recorder was used to collect traces
used in the simulations. Its price is ∼$300. (b) The
Apple iPod Touch (4th generation) running our Bat-
phone localization software was used for the end-to-
end experiment.
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Figure 4: Histograms showing the distributions of
room type and room size for the traces.

that all other recordings had been previously observed; this
is called leave-one-out classification. Specifically, each of the
264 samples (33 rooms × 2 visits × 4 positions) was com-
pared to 132 of the samples, which served as the training
set. Half of the samples for each room were included in the
training set, and the choice of test samples varied accord-
ing to the room being tested. For the test sample’s room,
all four samples from the other day’s visit were included in
the training set. For the 32 other rooms, the training set
included two samples from each of the two visits. Thus, the
training set was unbiased toward any room and it excluded
any samples from the same visit as the test sample. As
explained in Section 5.4, including training data from the
same visit as the test data would have made the resulting
classification accuracy unrealistically high. Given the train-
ing data set described above, the location label for each test
sample was assigned from the “closest” training sample; i.e.,
we used nearest-neighbor classification.

Using this trace collection and simulation scheme, we were
able to choose the best parameters for Batphone and to di-
rectly compare its performance to that of prior acoustic ap-
proaches. These results follow.

5. SIMULATION RESULTS
We now describe an evaluation of the ABS technique using

the DECENT criteria explained in the Introduction. The
evaluation uses trace-based simulation and focuses not only
on the overall performance of ABS, but also on its sensitivity
to its parameters. Our selection of parameter values for the
Batphone implementation is based on this study.

5.1 Distinctiveness
In order to support localization, a fingerprint should be

unique to a single location. In other words, a one-to-one
mapping should exist from fingerprints to locations. The
role of infrastructure in localization systems is to provide
such a mapping. For example, Wi-Fi localization systems
rely on the uniqueness of base station MAC addresses. In
the absence of uniquely-labeled infrastructure elements, fin-
gerprints are constrained to a finite space and thus overlap
of fingerprints is inevitable when the number of locations is
sufficiently large. One of the main purposes of our experi-
ments was to evaluate fingerprint distinctiveness, which we
measure by the localization accuracy.

Figure 6 shows the localization accuracy as a function of
the number of rooms being considered, which we call the
problem size. For the full set of 33 rooms, localization ac-
curacy is 69%. Pairs of rooms were distinguished with 92%
accuracy. Both of these fractions are far higher than the 3%
and 50% random chance probabilities. ABS fingerprints also
compare favorably to our own implementation of Surround-
Sense’s acoustic fingerprint algorithm [5]. Note that these
SurroundSense results include only their acoustic technique,
not their full sensor fusion approach (i.e., we do not include
the camera and radio).

Figure 5 shows the entire set of simulation data for the
optimal parameter values; it plots all 264 ABS fingerprints,
grouped by room and further grouped into two visits per
room. This plot visually confirms the similarity of ABS fin-
gerprints within rooms and distinctiveness between rooms.
Figure 7 shows the classification confusion matrix for this
simulation. We can see that prediction errors, indicated
by off-diagonal elements, tend to be distributed across the
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Room 1: Ford 2221
                (office)

Accuracy:100%

Room 2: Ford 2227
                (lounge)

Accuracy: 38%

Room 3: Ford 2230
                (office)

Accuracy: 25%

Room 4: Ford 3317
                (lounge)

Accuracy:100%

Room 5: Tech F235
                (classroom)

Accuracy:  0%

Room 6: Tech F252
                (computer lab)

Accuracy:100%

Room 7: Tech L158
                (classroom)

Accuracy: 88%

Room 8: Tech L160
                (classroom)

Accuracy:100%

Room 9: Tech L168
                (classroom)

Accuracy:  0%

Room 10: Tech L170
                (classroom)

Accuracy:  0%

1 2 3 4 5 6 7

Room 11: Tech L211
                (lecture hall)

Accuracy: 50%

Room 12: Tech L221
                (classroom)

Accuracy:100%

Room 13: Tech L251
                (classroom)

Accuracy:  0%

Room 14: Tech L361
                (lecture hall)

Accuracy: 75%

Room 15: Tech LG62
                (classroom)

Accuracy:100%

Room 16: Tech LG66
                (classroom)

Accuracy:100%

Room 17: Tech LG68
                (classroom)

Accuracy:100%

Room 18: Tech LG76
                (classroom)

Accuracy:100%

Room 19: Tech LR2
                (lecture hall)

Accuracy: 88%

Room 20: Tech LR3
                (lecture hall)

Accuracy:100%

Room 21: Tech LR4
                (lecture hall)

Accuracy: 88%

1 2 3 4 5 6 7
Frequency (kHz)

Room 22: Tech LR5
                (lecture hall)

Accuracy: 63%

Room 23: Tech M120
                (classroom)

Accuracy:100%

Room 24: Tech M128
                (classroom)

Accuracy: 50%

Room 25: Tech M152
                (classroom)

Accuracy: 63%

Room 26: Tech M164
                (classroom)

Accuracy:100%

Room 27: Tech M166
                (classroom)

Accuracy: 88%

Room 28: Tech M338
                (computer lab)

Accuracy:  0%

Room 29: Tech M345
                (lecture hall)

Accuracy:  0%

Room 30: Tech M349
                (classroom)

Accuracy:100%

Room 31: Tech MG51
                (computer lab)

Accuracy:100%

Room 32: Tech RYAN
                (lecture hall)

Accuracy:100%

1 2 3 4 5 6 7

Room 33: Tech XPRS
                (lounge)

Accuracy: 75%

Figure 5: Acoustic Background Spectra (ABS) from 33 rooms, using the optimal parameter values. The
vertical axis is the ABS value for each frequency bin; these values correspond to the log-scaled power spectrum.
Fingerprints from two visits are vertically offset from each other to aid visual comparison. Each visit includes
four overlaid fingerprints from different locations within the room.
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Figure 6: Accuracy as a function of the number of
rooms being distinguished. 1,000 random subsets of
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Figure 7: Confusion matrix for the 33 room sim-
ulation, using the optimal set of parameters. This
shows all of the localization decisions made in the
simulation. 69% of these location predictions were
correct, and thus fall along the diagonal.

rooms rather clustered at any particularly-favored predic-
tions.

5.2 Parameter study
Figure 8 shows how localization accuracy is affected by

changes in the ABS fingerprint parameters. Each of these
figures represents the change in localization accuracy sim-
ulated as one parameter was changed while the other pa-
rameters were kept at their optimal values. We kept the
problem size constant, using the full set of 264 samples from
33 rooms.

(a) Frequency band Accuracy
full (0–48 kHz) 59.8%

audible (0–20 kHz) 64.8%
low (0–7 kHz)* 69.3%

very low (0–1 kHz) 61.0%
(0–600Hz) 51.5%
(0–400Hz) 44.3%
(0–300Hz) 40.9%
(0–200Hz) 30.7%
(0–100Hz) 15.5%

high (7–20 kHz) 28.4%
ultrasonic (20–48 kHz) 25.0%

(b) Distance metric Accuracy
Euclidean* 69.3%
city block 66.7%

(c) Spectrogram window Accuracy
rectangular 65.2%
Hamming* 69.3%

Hann 68.2%
Blackman 67.4%
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(f) Sample time (tsamp), in seconds

Figure 8: Parameter study showing the best local-
ization accuracy achieved for 33 quiet rooms using
a variety of signal processing parameters. Optimal
values are highlighted.
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Responsiveness.
The first parameter we consider is the sample time (tsamp),

shown in Figure 8(f). Intuitively, we expect a longer record-
ing to be more noise-robust and thus to provide better local-
ization accuracy. However, a short sample time is desired for
system responsiveness, especially if the user is mobile. Al-
though the best results were obtained using the full 30 sec-
ond sample time, reducing the sample time to 4 seconds re-
duced the localization accuracy by only 11 percentage points
to 58%. An intermediate value of 8 seconds yielded 64% ac-
curacy. Our sample time is shorter than the one minute
sample time recommended in Wi-Fi localization work [13].

Compactness.
To reduce memory requirements, a fingerprint should be

compact. The ABS fingerprint size can be adjusted by vary-
ing the frequency resolution (nfp). However, reducing the
fingerprint size generally reduces distinctiveness. Figure 8(e)
shows the relationship between localization accuracy and the
ABS size. Each frequency bin is represented by a floating
point value. The optimal size of 299 bins requires 1,196
bytes of storage (assuming single-precision floats). However,
if memory is more constrained, ABS fingerprints with only
19 bins (76 bytes) still provide 60% accuracy. Note that
accuracy drops when moving to very high resolutions, pre-
sumably due to over-fitting.

Frequency band, metric, and window type.
Figure 8(a) shows the effect of limiting the ABS to vari-

ous frequency ranges. We found that the 0–7 kHz frequency
band gave the best results for quiet room samples (in Sec-
tion 5.3 we consider the noisy case). By the Nyquist sam-
pling theorem, this means that any audio sampling rate
above 14 kHz would be sufficient to achieve the best re-
sults. These requirements are very modest; our iPod sup-
ports 44.1 kHz sampling. A sampling rate of at least 8 kHz
is required to capture speech. At this low sampling rate,
61% localization accuracy can still be achieved. These re-
sults suggest that highly distinctive ABS fingerprints can be
captured with even the most basic audio hardware.

The distance metric chosen for comparing fingerprints also
affects the results, as shown in Figure 8(b). The city block
(also called Manhattan) distance requires less than half the
arithmetic operations of Euclidean distance, but gives re-
sults a few percentage points less accurate. Similarly, as
shown in Figure 8(c), using a rectangular window in the
spectrogram generation eliminates the vector multiplication
cost in exchange for losing a few percentage points of accu-
racy.

5.3 Noise-robustness
Any ambience sensing method for fingerprinting should

be robust to temporary changes in the environment, which
we call noise. In the design of the ABS, the 5th-percentile
(p05) fingerprint extraction step was intended to accomplish
this, as described in Section 3.2. Figure 8(d) shows how the
p05 transient noise rejection method affects localization ac-
curacy. The most important comparison in that bar chart is
to the mean. The mean method refers to collapsing the spec-
trogram into a single column by averaging all of the values
across time (the rows) and it is one of the standard methods
for computing the power spectrum (Welch’s method). The
results show that this basic spectral fingerprint produced by

the mean achieves 33 percentage points less accuracy than
the p05 fingerprint, presumably because it produces finger-
prints containing transient noise. Figure 8(d) also shows
accuracy achieved using other percentile values, from the
minimum (0th percentile), through the median (50th), to
the maximum (100th). The 5th-percentile gave the best re-
sults, but other low percentile values have similar benefits
compared to the mean.

To test the effect of occupancy noise on the ABS, we made
recordings in a lecture hall before, during, and after lectures.
This particular lecture hall (Tech LR5) has a maximum seat-
ing capacity of 88. Two lectures were recorded: “Economic
History of the U.S. to 1865” with 44 attendees and “Real-
Time 3D Game Engine Design” with 29 attendees. We de-
fined three occupancy noise states that were observed in the
recordings.

• Quiet times, prior to lecture, when a few students
might be present in the room, but no conversation oc-
curred,

• Conversation times, such as during the lecture, when
a single voice can be heard, and

• Chatter times, directly before and after lecture, when
many students were present, talking and moving nois-
ily.

We divided the 162.5 minutes of recordings into 30 second
windows and computed the ABS fingerprint of each window.
We ran the classification algorithm described in Section 3.3
using the same 33 rooms of training data. Thus, the training
set included only quiet samples while the test set included
quiet, chatter, and conversation samples. This experiment
tested the ability of the system to deal with the two types
of occupancy noise. We did not expect the occupancy noise
to be uniformly distributed across frequency. Therefore, we
tested the localization accuracy using a variety of frequency
bands in the ABS fingerprint, not just the 0–7 kHz band
that gave the best results for the quiet parameter study, as
shown in Figure 8(a). This allowed us to determine which
frequency band is least sensitive to occupancy noise.

Figure 9(a) shows the accuracy achieved with the noisy
test samples. Accuracy during the chatter noise state was
very poor, never significantly passing the random change ac-
curacy of 3.0%. However, the conversation state gave more
varied results. Accuracy was poor when using the 0–7 kHz
band in the conversation state; p05 transient noise rejec-
tion was insufficient. However, 63.4% accuracy was achieved
when restricting the ABS to 0–300Hz. We assume that the
success at the 0–300Hz band is due to its exclusion of the
speech band, which is approximately 300–3000Hz [21]. Un-
fortunately, as shown in Figure 8(a), overall quiet-state lo-
calization accuracy dropped from 69% to 41% when omit-
ting the speech band, so there is a trade-off here between
quiet-state accuracy and speech-noise rejection. These re-
sults suggest that automatically detecting the noise state
and switching the ABS band accordingly has the potential
to improve the overall success of our approach.

Figure 8(d) showed that p05 transient noise rejection im-
proves over the mean method in the quiet state. The im-
provement is even more drastic in the conversation state. In
that case, using the mean method with the 0–300Hz band
gave 0% accuracy compared to 63.4% for p05. In summary, a
combination of transient noise rejection and band selectivity
is needed to deal with speech noise.
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Occupancy Noise State
Frequency band Quiet Conversation Chatter

(a) Tech LR5 lecture hall
full (0–48 kHz) 56.8% 0.0% 0.0%

audible (0–20 kHz) 78.4% 0.0% 0.0%
low (0–7 kHz) 89.2% 2.5% 0.0%

very low (0–1 kHz) 45.9% 0.0% 0.0%
(0–600Hz) 37.8% 7.4% 0.0%
(0–400Hz) 73.0% 11.4% 0.0%
(0–300Hz) 75.7% 63.4% 0.0%
(0–200Hz) 21.6% 27.2% 1.2%
(0–100Hz) 21.6% 26.7% 4.7%

high (7–20 kHz) 21.6 0.0% 0.0%
ultrasonic (20–48 kHz) 32.4% 4.5% 3.5%

(b) Ford 3.317 lounge
low (0–7 kHz) 98.2% 47.2% —

(0–300Hz) 87.7% 79.2% —

Figure 9: Localization accuracy in two rooms as
a function of ABS frequency band and occupancy
noise state.

We also tested noisy-state accuracy in a smaller room.
In particular, we chose a kitchen lounge (Ford 3.317) which
is open to a hallway. During an hour-long experiment, we
invited graduate students to the lounge to eat free donuts
and socialize. A few dozen people came and left. At any
time, between 0 and 7 people were present in the room
and conversing while recordings were made and the occu-
pancy and noise level was monitored. Figure 9(b) shows
that, again, switching to the 0–300Hz band improved accu-
racy. Conversation-state accuracy was higher in this room
than in the lecture hall; this could be due to the presence of
longer pauses in speech while chewing donuts or due to the
size of the room.

5.4 Time-invariance
In order for a room fingerprint to be useful for localization,

it must remain relatively constant over time. Our traces
spanned several weeks and our simulations excluded same-
visit training data. Thus, our results already have factored
in the effect that time has on acoustic fingerprints. The high
accuracy numbers we report support the claim that ABS
fingerprints are stable enough to be used for localization.

Nonetheless, ABS fingerprints did vary somewhat over
time. Fingerprint pairs observed on different visits to the
same room had signal distance, on average, 24% larger than
pairs observed during the same visit. In other words, while
fingerprints observed in the same room on different days are
similar enough to support accurate localization, fingerprints
observed in quick succession are even more similar. In fact,
if our simulations had used same-visit training data they
would have reported 95.8% localization accuracy. However,
that would have been unrealistic since real localization sys-
tems must operate using only past training data. The stabil-
ity characteristics of ABS fingerprints are similar to those of
Wi-Fi fingerprints, as reported by Haeberlen et al. [13]. In
that work, localization accuracy dropped from 95% to 70%
when same-visit training data was excluded.

HVAC state
Training Test Training type Accuracy
on on different visit 71.7%
on/off off/on different visit 17.9%
on on same visit 98.9%
off off same visit 88.0%

Figure 10: Localization accuracy for 23 rooms under
different combination of HVAC states.

HVAC effects.
Despite the empirical stability of ABS fingerprints, we did

identify a scenario in which the ambient sound changed dras-
tically with catastrophic results. Over one weekend, the cli-
mate control (HVAC) system in the Technological Institute
was shut off for maintenance. We used this rare opportunity
to measure the effect that these vents have on the ABS. The
results are summarized in Figure 10. When using training
data from the a different HVAC on/off state, localization
accuracy dropped from 71.7% to 17.9% for the 23 rooms
accessed over that maintenance weekend. So, changes in
HVAC state have a large impact on ABS fingerprints. Yet,
as we have already observed, ABS fingerprints remained sta-
ble during the main trace collection period. We conclude
that HVAC did not significantly change state during trace
collection. Of course, some buildings may experience HVAC
state changes, and seasonal changes are also possible. How-
ever, since such combinations are not numerous, fingerprints
representing each of the possible HVAC states can be col-
lected for each room.

At first, we thought that we might identify HVAC sounds
as the main source of distinctiveness in ABS fingerprints.
However, the samples from the HVAC-off state still exhib-
ited enough distinctiveness to classify with 88.0% accuracy
compared to 98.9% accuracy for the HVAC-on state. Note
that, because we had only one day to survey the HVAC-
off state, we used same-visit training data in these results.
These numbers would be lower if testing and training were
done on different days, so they should not be directly com-
pared with our other results. Still, they show that the HVAC
sounds improve ABS-localization but are not essential.

6. BATPHONE IMPLEMENTATION
After completing the trace-based simulation we imple-

mented ABS fingerprinting on Apple’s iOS mobile platform.
This application, named Batphone, is publicly available on
Apple’s app store and its GUI is shown in Figure 3(b). Bat-
phone allows researchers to perform ABS localization in real-
time as well as to capture and export fingerprints for off-line
analysis. For details see the project website [1]. Our purpose
was to evaluate the limitations imposed by a real device’s
audio hardware and to ensure that the system could operate
in real-time.

Batphone is named after the small flying mammals that
navigate and locate prey by emitting chirps and then listen-
ing to resulting echoes. Batphone, on the other hand, does
not emit any sound (nor do our phones fly or eat insects);
it follows the same fingerprint extraction steps described in
Section 3, with some adaptations motivated by implemen-
tation considerations.
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Hardware limitations.
Compared to the hardware used in trace collection, our

deployed mobile platform has inferior recording capabilities.
Its microphone is small, inexpensive, and crowded by other
electronics. Also, the audio circuitry is designed for record-
ing speech, and thus has a limited frequency ranges. In par-
ticular, audio sampling is 16-bit at 44.1 kHz. The system
parameter values chosen were based on the results previ-
ously presented and are listed in Figure 1.

In a real system, location must be calculated in real-time
and on a battery-powered device with limited computation
power. We made a few adjustments to the ABS extrac-
tion algorithm to reduce its computational load while only
slightly reducing its accuracy. In particular, we use a rectan-
gular window function rather than a Hamming window and
omit the normalization step. Section 8.3 shows our overhead
measurements.

On-line training.
Another complication in the real system is online training

and bootstrapping. Recent localization work has explored
strategies for building fingerprint databases on-line rather
than relying on explicit surveys [24]. Whenever a finger-
print is observed, the system either matches it with one al-
ready observed in the database or adds it to the database as
an example of a new room. On-line systems also can auto-
matically adapt to changes in the environment. We do not
address the challenges of on-line database growth in this
work. Instead, we use the same surveying and simulated
training/testing approach that we used in the previous ex-
periment.

Sliding-window 5th-percentile.
To improve responsiveness in the Batphone implementa-

tion, we implemented the ABS calculation steps of Figure 2
in a streaming fashion. The spectrogram rows are stored
in sliding window buffers. After each recording frame ar-
rives, its power spectrum is computed, each frequency ele-
ment is added to the corresponding spectrogram sliding win-
dow, and the oldest element of each window is discarded. At
this point the fingerprint is recomputed, based on the new
5th-percentile values from each sliding window. Thus, the
fingerprint is updated every tspec = 0.1 seconds rather than
every tsamp = 10 seconds. Of course, if the user moves to a
new location, it will be 10 seconds before all data from the
old location are purged from the sliding window. However,
this is much better than the 20 second worst-case purge time
when not using a sliding window.

The most complex part of the streaming implementation
is tracking the 5th-percentile value of the sliding windows.
This is known as a rank-order filter [4]. In a näıve imple-
mentation, a selection or sorting algorithm would be run on
the spectrogram rows after each new frame arrives. Instead,
we use a much more efficient heap-based data structure to
track the p05 value. Values below the current p05 value are
stored in a max-heap while values above the current p05
value are stored in a min-heap. Additionally, a mapping be-
tween heap indices and a FIFO queue is maintained to allow
the oldest data value to be quickly located in the appropri-
ate heap. Details are omitted, but we are simply adapting
standard algorithms for calculating the running median to
use the 5th instead of 50th percentile [4, 14]. The runtime

complexity of a frame insert operation is dominated by nfp

heap inserts and is in Θ (nfp log (tsamp/tspec)).

7. LINEAR COMBINATION DISTANCE
As seen previously in Figure 6, the performance of acous-

tic localization declines as the problem size (the number of
rooms to choose from) increases. Our study considered scal-
ing empirically up to 33 rooms.3 Regardless of the asymp-
totic scaling of ABS, however, ABS fingerprints could be
used to great effect on large-scale problems when combined
with another fingerprint such as those from Wi-Fi or cellular
radios.

One option is to use a multi-step localization scheme [5].
First, radio localization determines the approximate loca-
tion, then acoustic localization can effectively determine the
final location since it simply has to choose from among a
small location neighborhood. We found this approach to be
both intuitive and relatively effective. However, we propose
a new approach that gives better accuracy by considering
the two fingerprint spaces simultaneously; we propose a lin-
ear combination of each type of fingerprint distances.

The linear combination depends on some measurements
of the environment characteristics. Each of n fingerprint
types gives a distance di, which we expect to fall within
some match range (mini,max i) when comparing two finger-
prints observed in the same room. Furthermore, we assign
each fingerprint type a weighting constant wi indicating the
relative importance or reliability of that fingerprint type.
Combining these constants in the natural way yields the lin-
ear combination distance formula:

dcombined(di . . . dn) =
nX

i=1

wi
di −mini

max i −mini
.

In our experiments, mini and max i are chosen simply as
the minimum and maximum observed same-room distances.
In a real system, some sort of outlier elimination would be
needed (perhaps by using the 5th and 95th-percentile same-
room distances). The weighting constants wi were chosen
experimentally; since only two fingerprint types were con-
sidered, this meant just setting w1 = 1 while varying w2

and choosing the value that resulted in highest localization
accuracy.

8. BATPHONE RESULTS
Our second experiment was carried out with our Batphone

application running on an Apple iPod Touch mobile device
(Figure 3(b)). The procedure was identical to that described
in Section 4, except that instead of capturing sound record-
ings the Batphone app was used to simultaneously capture
two compact fingerprints: an ABS fingerprint and a Wi-
Fi location coordinate, described below. It involved a set
of 43 rooms mostly overlapping with the 33 rooms used in
the previous experiments. Also, only two room positions
were captured rather than four, meaning that the system
had less training data. The two purposes of this experiment
were to show the feasibility and performance of a real im-
plementation on typical smartphone hardware and to com-
pare Batphone’s localization results to those of the device’s

3One goal of making the Batphone implementation publicly
available is to allow us to expand our scaling study through
volunteers.
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Figure 11: Localization accuracy for a set of 43
rooms using a variety of fingerprint types.

Wi-Fi-localization service, which represents the commercial
state of the art. We also evaluate the linear combination
localization approach.

On our iOS 4 mobile device, Apple’s Core Location ser-
vice maps Wi-Fi RSSI scans to GPS coordinates. On older
versions of iOS, Wi-Fi localization was provided by the Sky-
hook service. If a cellular or GPS signal is also available,
then that information is used as well (however, our test iPod
had no such radios). We use the returned (latitude, longi-
tude) coordinate as the Wi-Fi fingerprint, since we do not
have access to Apple’s internal Wi-Fi fingerprint representa-
tion. We compute distances between Wi-Fi fingerprints as
simply the traveling distance between coordinates (known
as the great circle distance). Core Location provides a dy-
namic accuracy estimate, which is typically in the tens of
meters when using Wi-Fi. This accuracy is far inferior to
that achieved by the latest research methods; it is clearly not
intended for room-level indoor localization. However, Core
Location serves as a useful comparison point because it is
readily available and well-trained; its database has drawn
data from millions of GPS-equipped iPhones. We treat it as
a proxy for any of various research Wi-Fi-localization meth-
ods operating in sub-optimal conditions, e.g., due to sparse
infrastructure, incomplete surveying, or radio interference.
We expect such conditions to be quite common. The abso-
lute performance we report for Wi-Fi is far less important
than the fact that combining it with ABS yields a very ac-
curate and scalable localization system.

8.1 Accuracy
Figure 11 shows our Batphone localization results. Wi-Fi

performs poorly at room-level localization, as expected. Our
Batphone ABS-localization implementation running on real
mobile device hardware performs on par with the simula-
tion results summarized in Figure 6. It appears that moving
from expensive music-recording equipment to a mobile de-
vice’s built-in microphone had no significant impact on per-
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Figure 12: Comparison of localization performance
for a variety of fingerprint types. Note that Bat-
phone’s ABS fingerprint is superior to Wi-Fi’s at
fine granularity but inferior at coarse granularity.
The linear combination approach combines the best
aspects of both localization methods.

formance. Also, the linear combination distance performed
much better than either ABS or Wi-Fi alone. We also com-
pared to a two-step localization approach, which first elimi-
nated all rooms with Wi-Fi distance greater than 35 meters
(this value was optimized empirically) and then chose the
room with closest ABS distance. This combination also per-
formed well, but had accuracy 1.5 percentage points inferior
to the linear combination. Note that empirically-optimized
weighting constants used for the linear combination were
wabs = 3 and wwifi = 1.

The oracle combination bar in Figure 11 gives a sense of
the upper-bound performance of any fingerprint combina-
tion scheme. In this hypothetical approach, the algorithm
first generates a location estimate using one fingerprint type.
Next, an oracle tells whether that location choice was cor-
rect, and, if not, the second fingerprint type is used to make
a new choice.

The error characteristics were also quite different for the
localization methods. Figure 12 shows the distribution of
rankings for the correct room. These rankings are deter-
mined by the sorting the distances to the closest fingerprint
from each room. If the correct room is ranked number 1,
then that room is selected as the current location and the lo-
calization method is said to be accurate; if the correct room
is ranked number 2 then localization was “almost correct”,
etc. Figure 12 shows that acoustic and Wi-Fi localization
methods have different strengths. Looking at the left-side
of the plot, we see that ABS is much more often strictly-
accurate (due, in part, to the relatively small problem size
of 43 rooms). At the right-side of the plot, performance of
Wi-Fi surpasses ABS; Wi-Fi makes fewer“really bad”errors.
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2D histograms of physical and fingerprint distances
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Figure 13: Relationship between fingerprint and
physical distances.

The combined localization approaches work far better than
either ABS or Wi-Fi, with the linear combination showing
a slight advantage over the two-step combination.

8.2 Adjacent room discrimination
Unlike radio, sound waves do not penetrate walls well.

Therefore, we expect that among adjacent rooms, ABS fin-
gerprints will vary much more significantly than radio fin-
gerprints. To test this hypothesis, we measured the physical
distances between the rooms in our study using pixel loca-
tions on a floorplan image. Figure 13 shows the relationship
between fingerprint distances and physical distance. These
results are similar to those reported by Park et al. [24, Fig-
ure 2]. Figure 13(a) shows, as expected, that Wi-Fi dis-
tance tends to increase with physical distance. In partic-
ular, no distant room pairs had low Wi-Fi distance; i.e.,
Wi-Fi has high coarse-grained accuracy. In contrast, Fig-
ure 13(b) shows that ABS distances of rooms are generally
uncorrelated with their physical distances. In particular,
nearby rooms have a high degree of diversity (with pairwise
distances relatively evenly spread across the ABS distance

range). We exploited these complementary features in the
linear combination of these two fingerprints, described previ-
ously in Section 7 and illustrated in the results of Figures 11
and 12.

Assuming no correlation between ABS and physical dis-
tances (as suggested above), Figure 6 tells us that pairs of
adjacent rooms should be distinguished by ABS fingerprints
with around 92% accuracy.

8.3 Overhead
To test the overhead associated with ABS fingerprint ex-

traction, we measured iPod battery lifetime while contin-
uously running the Batphone app (with the screen on its
dimmest setting). The device ran for 7.9 hours on a single
charge, computing about 260,000 fingerprints and making
13,000 location estimates from a database of 190 stored fin-
gerprints (while also rendering an animated GUI showing
the results). Battery lifetime was 8.75 hours when running
a stripped-down version of the app that simply captured
ABS fingerprints without classifying them. For compari-
son, Wi-Fi localization gave the same 8.75 hour battery life
and the manufacturer claims up to 7 hours of battery life
while playing videos. While continuously determining lo-
cation and rendering the results at a rate of once per two
seconds, Batphone used 11.5% of the CPU and 16.7MB of
RAM (of 256MB total). These energy and performance
overheads certainly seem tolerable.

9. CONCLUSIONS
We have shown that accurate indoor localization can be

achieved without reliance on a dense, static radio infras-
tructure. To accomplish this, we introduced a new acoustic
ambience fingerprint, the Acoustic Background Spectrum,
which is highly distinctive, robust, and easy to compute.
We further introduced a method of combining location fin-
gerprints that allows for highly accurate indoor localization
by combining two (or more) less accurate fingerprints with
different error characteristics.

Future work.
We are presently building a fingerprint sharing and match-

ing infrastructure that can scale to many users. Also, we
have not fully explored using the linear combination distance
with other fingerprint types. It is likely that more accurate
localization can be accomplished by adding accelerometer
and camera data.

Portions of the noise rejection problem remain unsolved.
The 5th-percentile filtering technique does reject some noise
and we have a strategy for dealing with single-speaker noise
(by switching to the 0–300Hz band). However, we do not
have a policy for controlling this frequency band switch. Fur-
thermore, we were not able to cope with the noise introduced
by tens of speaking occupants (the chatter state). We will
explore whether adding training samples that include noisy
states addresses the latter problem.
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[14] Härdle, W., and Steiger, W. Optimal median
smoothing. Applied Statistics 44, 2 (1995), 258–264.

[15] Hightower, J., Consolvo, S., LaMarca, A.,
Smith, I., and Hughes, J. Learning and recognizing
the places we go. In Proc. Intl. Conf. on Ubiquitous
Computing (UbiComp) (Aug. 2005), pp. 159–176.

[16] Kang, J. H., Welbourne, W., Stewart, B., and
Borriello, G. Extracting places from traces of
locations. In Proc. Intl. Wkshp. on Wireless Mobile
Applications and Services on WLAN Hotspots
(WMASH) (2004), pp. 110–118.

[17] Kim, D. H., Hightower, J., Govindan, R., and
Estrin, D. Discovering semantically meaningful
places from pervasive RF-beacons. In Proc. Intl. Conf.
on Ubiquitous Computing (UbiComp) (2009).

[18] Kuttruff, H. Room Acoustics. Halsted Press, 1973.
[19] Lu, H., Pan, W., Lane, N. D., Choudhury, T.,

and Campbell, A. T. SoundSense: scalable sound
sensing for people-centric applications on mobile
phones. In Proc. Intl. Conf. on Mobile Systems,
Applications, and Services (MobiSys) (2009),
pp. 165–178.

[20] Ludford, P. J., Frankowski, D., Reily, K.,
Wilms, K., and Terveen, L. Because I carry my cell
phone anyway: functional location-based reminder
applications. In Proc. Intl. Conf. on Human Factors in
Computing Systems (CHI) (2006), pp. 889–898.

[21] Moore, B. C. J. An Introduction to the Psychology
of Hearing. Emerald Group Publishing, 2003.

[22] Oppenheim, A., and Schafer, R. Discrete-Time
Signal Processing. Prentice-Hall, 1989.

[23] Otsason, V., Varshavsky, A., LaMarca, A., and
de Lara, E. Accurate GSM indoor localization. In
Proc. Intl. Conf. on Ubiquitous Computing (UbiComp)
(Sept. 2005), pp. 141–158.

[24] Park, J.-g., Charrow, B., Curtis, D., Battat, J.,
Minkov, E., Hicks, J., Teller, S., and Ledlie, J.
Growing an organic indoor location system. In Proc.
Intl. Conf. on Mobile Systems, Applications, and
Services (MobiSys) (2010), pp. 271–284.

[25] Priyantha, N. B., Chakraborty, A., and
Balakrishnan, H. The Cricket location-support
system. In Proc. Intl. Conf. on Mobile Computing and
Networking (MobiCom) (2000), pp. 32–43.

[26] Proakis, J. G., and Manolakis, D. G. Digital
Signal Processing. Prentice-Hall, 1996.

[27] Scott, J., and Dragovic, B. Audio location:
accurate low-cost location sensing. In Proc. Intl. Conf.
on Pervasive Computing (2005), pp. 1–18.

[28] Tarzia, S. P., Dick, R. P., Dinda, P. A., and
Memik, G. Sonar-based measurement of user presence
and attention. In Proc. Intl. Conf. on Ubiquitous
Computing (UbiComp) (Sept. 2009), pp. 89–92.

[29] Want, R., Hopper, A., Falcão, V., and Gibbons,
J. The active badge location system. ACM Trans.
Information Systems 10, 1 (1992), 91–102.

[30] Ward, A. Sensor-driven Computing. PhD thesis,
Corpus Christi College, University of Cambridge,
Cambridge, UK, Aug. 1998.

[31] Woodman, O., and Harle, R. Pedestrian
localisation for indoor environments. In Proc. Intl.
Conf. on Ubiquitous Computing (UbiComp) (2008),
pp. 114–123.

[32] Youssef, M., and Agrawala, A. The Horus WLAN
location determination system. In Proc. Intl. Conf. on
Mobile Systems, Applications, and Services (MobiSys)
(June 2005), pp. 205–218.

168


