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Abstract

The display remains the primary user interface on many comput-
ing devices, ranging from traditional devices such as desktops and
laptops, to the more pervasive devices such as smartphones and
smartwatches. Thus, the overall user experience with these comput-
ing devices is greatly determined by the display subsystem. Ideal
display brightness is critical to good user experience, but actually
predicting the ideal brightness level which would most satisfy the
user is a challenge. Finding the right screen brightness is even more
challenging on mobile devices (which is the focus of this work), as
the screen tends to be one of the most power consuming components.
Currently, the control of display brightness is usually done through
a simplistic, static one-size-fits-all model which chooses a fixed
brightness level for a given ambient light condition.

Our user study and survey of research literature on vision
and perception establish that the simplistic model currently used
for display brightness control is not sufficient. The ideal display
brightness level varies from one user to another. Furthermore, in
addition to ambient light, we identify additional contextual data that
also affect the ideal brightness. We propose a new system, Context-
Aware PErsonalized Display (CAPED), that uses online learning to
control the display brightness, and is theoretically and practically
shown to improve prediction accuracy over time. CAPED enables
personalization of brightness control as well as exploitation of richer
contextual data to better predict the right display brightness. Our
user study shows that CAPED improves the state-of-the-art brightness
control techniques with a 41.9% improvement in mean absolute
prediction accuracy. Our user study also shows that on average the
users had 0.8 point higher satisfaction on a 5-point scale. In other
words, CAPED improves the average satisfaction by 23.5% compared
to the default scheme.

1. Introduction

The display is the primary user interface in many devices across the
computing spectrum. It is used as the primary output interface on
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traditional devices such as desktops and laptops. With the advent
of the pervasive and ubiquitous computing era, devices such as
smartphones, tablets, and smartwatches also use the display as
the primary source of input to efficiently utilize their small size
and form factor. This trend toward display-centric operation began
with resistive and stylus-based PDAs and phones (such as the
PalmPilot®), and reached a new level of popularity with modern
smartphones and tablets. Thus, in many modern computing devices,
the display quality is an important factor in determining the overall
user experience.

The relative quality of a mobile display depends on many
parameters such as its size, resolution, and brightness. Larger and
higher-resolution screens have received widespread attention [1].
Our focus is on controlling the display brightness to improve user
experience. Unlike other display characteristics, brightness needs
to be dynamically adjusted to suit the user in a given environment.
For example, when checking emails in a dark room at night on their
phone, a given user would tend to prefer a lower brightness, but
when using their phone outside on a sunny day, that same user would
tend to prefer a higher brightness. The choice of ideal brightness
clearly depends on the ambient light in the surroundings. This led
to the inclusion of ambient light sensors on many mobile devices.
On most modern smartphones, the brightness of the display is set
via the ambient light reported by these sensors [16].

However, this approach has two primary limitations. First, it
ignores the difference in brightness preference from one user to
another. Not all users are identical and one user might require
a brighter screen for the same environment than another user.
Second, the current approach does not include external context,
apart from ambient light. We define context as any data which can
be used to better explain a user’s current state and their surrounding
environment. We did a survey of existing research literature on
perception [2, 9, 10] to discover existing knowledge on variance
of brightness perception from one individual to another. We also
conducted user studies to investigate the need for personalization
as well as the need for using additional context information. Our
studies presented in Section 2 clearly show that the one-size-fits-all
simplistic approach to controlling brightness of displays needs to be
improved.

We propose a novel Context-Aware PErsonalized Display
(CAPED) management system. The new system improves the existing
state-of-the-art in two ways:

e We discover relevant context apart from ambient light which
influences the preferred display brightness level, and include
these in our new system.



e We develop an online learning-based approach which enables
personalization to individual user preferences. Our algorithm is
shown to theoretically and practically improve in accuracy over
time as it adapts to user preferences. Further, we show that on
average, we would never be worse than the current state-of-the-
art technique which uses a fixed mapping for all users.

We validate our new system through a user study conducted on 10
users who were asked to use CAPED-enabled smartphones as their
primary device for one week. Our user study demonstrated that
the new system could more accurately predict the users’ preferred
screen brightness level than the existing state-of-the-art. The average
improvement in absolute prediction error in CAPED is 41.9%. Users
were also asked to rate the default and CAPED systems after a day of
use. On a 5-point scale of satisfaction reported by the users, CAPED
improves the satisfaction by 0.8 points on average.

The rest of the paper is organized as follows. We discuss the
need for personalization and the need for including additional
context information in Section 2. In Section 3, we describe some
background on mobile display subsystems. In Section 4, we describe
our proposed system and its different components. We explain the
experimental setup used in our user studies in Section 5. We present
our results in Section 6, introduce some related work in Section 7,
and give a brief conclusion in Section 8.

2. Motivation

In this section, we present our motivation for the creation of an
improved adaptive brightness model. The two primary pieces of
motivation that we provide are the need for personalization and the
need for the inclusion of additional contextual information in display
brightness models.

2.1 Importance of Personalization

One of the most significant issues with current display brightness
models is that they are generalized to the average user, and allow
little room for personalized, per-user settings. These models assume
that all users have the same screen brightness requirements, and so
screen brightness is controlled accordingly. We don’t believe that
this is a sufficient approach to display brightness control, and we
present some supporting evidence here.

One visual perception metric for mobile displays is that of read-
ability. There are many ways to define a display’s readability, but
here we consider the metric RVP (relative visual performance), de-
scribed by the standards organization CIE [2], and further explored
in the work by Kelley et al. [10]. RVP measures the accuracy and
speed with which a user can read text at a specific detail size, ambi-
ent light level, and contrast ratio. Some RVP curves for discerning
detail at a 1.5’ (minutes of arc) are presented in Figure 1.

One notable feature of the graphs in Figure 1 is that they
confirm that RVP is highly dependent on the contrast ratio C. It’s
also interesting to note that readability increases with the average
luminance, but only when the contrast ratio is held constant. Since
increased ambient luminance decreases the contrast ratio on LCDs,
increased ambient luminance will actually reduce RVP.

The need for personalization can be seen by comparing the RVP
curves for these three graphs. These graphs contain aggregated data
for subjects of varying ages. As these graphs show, the required
contrast for a given RVP level increases significantly as users age.
This point alone suggests that a generalized model can be improved
upon with a more personalized model; age is not considered at all
in generalized brightness models. Furthermore, it is important to
note that these graphs contain data aggregated across a number of
users for a given age. Simply knowing one particular user’s age does
not mean that that user’s individual RVP curve can accurately be

determined; there is a large amount of additional variability even
between users of a similar group.

For example, visual acuity can vary from user to user. Visual
acuity is a measurement of the clarity of a person’s visual system,
and is dependent on a variety of factors, including the quality of
the focused image on the retina, the proper functioning of the retina
itself, and the ability of the nervous system and brain to transmit
and interpret the visual data [5]. A user with poor visual acuity will
have worse RVP measurements than a user with good visual acuity
in the same ambient light and contrast range.

There is even variability among two users with similar visual
acuity. Contrast sensitivity is a measurement of how well a user
can discern contrast in a given scene [9]. Even a user with perfect
visual acuity may struggle with contrast discernment tasks. Since
contrast sensitivity is directly related to the contrast curves in the
RVP metric, this further complicates the feasibility of a generalized
brightness model.

To further experimentally motivate our work, we run an initial,
controlled user study. To do this, we brought a series of users into our

lab. The users were seated with a Google® Nexus 4 smartphone.
Users were then asked to indicate their preferred brightness levels
while we artificially manipulated the surrounding ambient light
levels and on-screen images.

The results from this study are shown in Figure 2. This data
contains 4 dimensions (the user, the displayed image, the ambient
light level, and the user’s brightness preference). To show the
underlying trends in this data, in Figure 2a we average the results
across different images, while in Figure 2b, we average our data
across users.

As the Figure 2a shows, not only do users’ display preferences
differ from one another significantly, but they also differ from the
default brightness model on the device. There is a general positive
correlation between brightness and ambient light, but some of the
users do exhibit either negative or little correlation of their preferred
brightnesses with ambient light.

Although RVP is solely based on textual readability, our mo-
tivating study looks at brightness requirements for both images
and textual data. Figure 2b suggests that required screen brightness
varies not just for text, but also for images. It’s interesting to note
that the actual on-screen image impacts the preferred brightnesses;
some on-screen content demands higher or lower brightness levels
than others for certain users.

Given the fantastic complexity of any individual user, we believe
that a generalized model of user brightness preferences is infeasible
at best, and impossible at worst. Because of this, we propose
that to accurately predict screen brightness levels, we must use
a personalized, per-user brightness model. Furthermore, we also
believe that there are external factors besides the visual system
and readability which may significantly impact an individual’s
brightness requirements at any given point in time. We outline these
external factors in Section 2.2.

2.2 Contextual Data Inclusion

In Section 1, we defined context as any data which can be used
to explain a user’s current state and their environment. Currently,
baseline models for screen brightness requirements are solely
based off of contextual data regarding ambient light. Ambient light
contextual data allows the model to attempt to provide a more
constant level of readability to the user. However, we believe that
there are other contexts that are important in accurately predicting
preferred screen brightness. Here, we outline the contextual data
that we include in our proposed system, and provide some intuition
behind the decision of using the context in our model. This is not
meant to be an exhaustive list of all possible contextual data, but as
a reasonable starting point for a more contextually-aware system.
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Figure 1: Aggregated readability curves [10] for users of varying ages, generated using data from CIE [2]. As users age, their ability to discern
detail drops significantly at a given luminance and contrast ratio level. Contrast ratio and luminance are both strong predictors of readability.
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Figure 2: Results of initial study which analyzed users’ brightness preferences for a selection of on-screen images and ambient light levels.
Figure 2a suggests that user brightness preferences differ from one another, and from the manufacturer’s default brightness model. Figure 2b
suggests that image content significantly impacts brightness preferences.

Circadian rhythm is a 24-hour cycle that many biological pro-
cesses are based around. Excess artificial light is known to have the
potential to disrupt the regularity of this cycle [6]. This can make it
difficult to fall asleep, stay asleep, wake up in the morning, or func-
tion at full energy throughout the day. Because of this, we suspect
that users may have differing brightness requirements depending
on where the sun is in the sky. We don’t believe that this context
should be used in a generalized model, because people have their
own natural tendency toward being more active at night or during
the day (night owls vs early birds) [12].

We also believe that the duration a display is active can be a
good predictor of brightness requirements. We propose using device
on-screen time, which is a measure of how long it has been since
the user turned their screen on, as a useful piece of contextual data.
Since phones provide their own light source, the human eye adjusts
to this source of light altering its physiological characteristics [3].
We intuitively expect that as users become acclimated to the phone’s
brightness, they may have varying brightness requirements.

Accelerometer data is another potentially useful piece of contex-
tual data. The more that a phone (and the user) moves around, the
harder it becomes to see the screen, reducing RVP at a given screen
brightness level [15].

A similar context, activity characterization, may also improve
brightness predictions. Activity characterization uses a combination
of on-device sensors to predict what a user is currently doing (e.g.,
still, walking, biking, driving, or tilting the screen). Because visual
acuity or the amount of constant attention that can be given to the
display may differ between these activities, we believe this context
to be potentially useful.

Battery level is another interesting piece of contextual data. We
anecdotally observed that some users adjust their screen brightness
depending on how much battery life is remaining. If the remaining
battery level is low, the tendency is to dim the screen to extend the
remaining on-screen time, which suggests that this context may have
some predictive power.

Finally, we include location data as an input context in our model.
We believe that the user’s current location (work vs home, etc.) may
impact a user’s display brightness requirements.

In Section 2.1, we noted that on-screen content can be a strong
predictor of required display brightness. However, for the reasons
specified in Section 4, CAPED is implemented as an application-
level piece of software rather than integrated at the platform level.
Because of the Ul lag that including display content as a context
causes, we don’t include display content contextual data for this
study. We may, however, explore the inclusion of screen content at
the platform level in the future.

3. Background

In this section, we introduce some common mobile display technolo-
gies, and explore their optical characteristics and their relationship
with ambient light.

3.1 Modern Display Technologies

There are many mobile display technologies, and we outline some
of the more prominent ones in this section. The remainder of the
paper will solely focus on LCDs, but OLED displays behave in
an optically similar manner, suggesting that this work can also be
applied to OLED displays. Because reflective displays have no light
source of their own, they are only included for discussion.



3.1.1 LCD Displays

LCDs are the most widely used and mature of the mobile display
technologies. The two most important active elements of an LCD
are the backlight and the liquid crystal matrix. The backlight is just
as it sounds — it is simply a light source which rests at the back of
the LCD. On top of the backlight lies the liquid crystal matrix. The
liquid crystal matrix controls the colors on the screen.

The liquid crystal matrix contains an array of red, green, or
blue liquid crystal light filters. These filters are controlled by a
connected voltage line, which alters the crystalline state of each
point. Depending on the crystalline state of the liquid crystal
material, each colored filter appears either transparent (appearing
red, green, or blue), opaque (appearing black), or somewhere in-
between. An individual pixel is made up of the combination of three
(or more) of these red, green, and blue points, and depending on how
the colored elements are combined, the whole gamut of the color
spectrum can be produced. A modern display contains millions of
these individual pixels.

3.1.2 OLED Displays

OLEDs have similar optical characteristics to LCDs, but use vastly
different technology. Instead of using a backlight and a configurable
color filter, a pixel on an OLED is comprised of a set of extremely
small LEDs, each of which emits its own red, green, or blue light.
By adjusting the brightness of each of the red, green, and blue LEDs,
the visible color spectrum can be produced.

LCDs have slightly different operating characteristics than
OLED displays. First of all, LCD pixels can never be completely
black; some of the backlight always leaks through the pixel, even
when the crystalline state is as opaque as possible. OLEDs can be
completely turned off, and so have better black level characteristics.
Secondly, LCD power consumption is primarily dependent on the
backlight, while OLED power is dependent on the state of each
individual pixel. Because of this, the color content of the on-screen
image of an OLED impacts the power consumption, while an LCD
at a given backlight level always uses the same amount of power.

3.1.3 Reflective Displays

Reflective displays, commonly used in eBook readers, do not
provide their own light source. Instead of pixels, a reflective display
contains a matrix of individual points of electrically controlled
pigment, which is optically similar to a piece of paper. Since the
pigments absorb an approximately constant percentage of incoming
light, a good display contrast is maintained even in direct sunlight.
However, reflective displays have slow refresh rates, and perform
poorly with dynamic screen content.

3.2 Display Subsystem
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Figure 3: Diagram for the Embedded DisplayPortTM display sub-
system [21]. This organization of subsystem blocks is typical for
modern mobile devices.

A mobile LCD consists of a number of logical blocks interacting
with one another. We give a high-level overview of a typical display
subsystem in Figure 3.

As the figure shows, the primary blocks include the operating
system, the GPU, the LCD’s TCON (Timing CONtroller) board,
and the LCD panel itself. The process of displaying an image on
the screen begins with the OS and GPU. Using data provided by
the operating system, the GPU is tasked with rendering what will
eventually become an image on the mobile display. Once that image
is rendered, it is passed along from the eDP (embedded DisplayPort)
transmitter on the GPU to the TCON board via the main link, which
handles the synchronization and populating of data on the display
panel.

One important mobile optimization is the self-refresh sys-
tem [21]. Panel self-refresh takes advantage of the fact that of-
tentimes, the image on a mobile screen isn’t changing. For instance,
if a user is reading text, viewing a static image, or waiting to interact
with the UI between animations, the display image is completely
static. Instead of the GPU constantly providing the display panel
with updated image information (again, even though the image
is static), the panel self-refresh system allows the GPU to enter a
low-power state until a new image actually needs to be rendered.
Meanwhile, the TCON board internally handles displaying the same
constant image on the display without requiring input from the GPU,
which saves both GPU and bus transfer power.

A second important mobile display optimization is automatic
backlight brightness control. It is common for mobile displays
to allow programmatic setting of the backlight brightness via the
operating system. This enables the operating system to control the
backlight brightness, which allows screen brightness optimization
in a wide variety of ambient light ranges. As of the Embedded

DisplayPortTM v1.2 specification, this data is passed via the eDP
transmitter’s AUX data line to to the TCON panel, which is in turn
passed to the backlight driver. This backlight control is the element
of the display subsystem that we focus on improving in this work.

3.3 Display Optical Characteristics

We mentioned in Section 3.2 that a programmatically controlled
backlight allows for improved viewing characteristics in a wide
range of ambient light ranges. But why does ambient light have such
an impact on the legibility of a display?

Contrast ratio, as we explained in Section 2.1, is a significant
indicator of the readability of a display. There are a variety of ways
to express contrast ratio, but a generalized equation for the contrast
ratio of a display is given by Equation (1) [10], where L4 is the
highest achievable luminance of the display, and Ly, is the lowest
achievable luminance of the display. Luminance is defined as the
amount of light leaving a given surface, while illuminance is defined
as the amount of light striking a surface from some light source.
Luminance is dependent on the surface’s reflective characteristics.

C — Lmaz - Lmzn (1)
Lmaa:

Thus, as the difference between the brightest and darkest parts
of the screen increases, so does the contrast ratio.

However, if contrast ratio is determined by the darkest and
brightest parts of the screen, then what does ambient light have
to do with this equation? It’s important to note, that even though
contrast ratio is dependent on how bright and dark the screen can
get, the surrounding ambient light impacts these light and darkness
values. This is shown graphically in Figure 4.

When ambient illuminance £ comes into contact with an LCD,
it doesn’t just dissipate; some portion of that light is reflected back
to the viewer. The amount of reflected light is scaled by the display’s
reflective coefficient p. This reflected light is seen together with
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Figure 4: Representation of light-display interaction. Ambient light
directly impacts LCD contrast ratio.

the device’s emitted light .J, which impacts the display’s contrast
ratio. To illustrate this point: in a perfectly dark room, C' is solely a
function of just the screen’s white and black characteristics, and is
at its maximum possible value. In a brightly lit area, however, the
ambient light increases the luminance of the screen’s white and dark
regions, which can significantly reduce the contrast ratio.

4. System Description

As outlined in the previous section, there are a number of shortcom-
ings that current adaptive screen brightness systems currently have.
The primary deficiencies we identified are that current adaptive
screen brightness systems are one-size-fits-all, and that providing
additional contextual data can improve adaptive screen brightness
prediction accuracy. In this section, we describe CAPED, our pro-
posed system for addressing these deficiencies.

4.1 Proposed Model Description

To describe our model for predicting user satisfaction, we first
begin with the manufacturer default ambient brightness model, and
gradually modify that model to incorporate personalization and
context awareness in the model. As shown visually in Figure 5a,
the sole input to the default prediction model is ambient light
information. A simple, fixed function is then applied to the ambient
light values, and a predicted value for that ambient light level is
generated.

This model is completely static, which means that no personal-
ization can be performed. To address this, we allow users to directly
provide our model with preferred brightness levels. With each new
brightness preference indication, the adaptive model is updated to
better match the user preference.

It’s important to note that one of our top priorities in this system
was to improve the adaptive brightness model, but only if we can
do so without negatively impacting the user experience. Thus, we
do not want to interrupt users or disturb their device session in any
way to get brightness preference information. Instead, users make
their brightness indications only when they are dissatisfied with the
brightness state. Their indications are easily made via a button in the
notification area, which displays a slider that allows them to select a
preferred brightness level.

The second aspect of the default model we aim to fix with CAPED
is that the only context used as an input to the model is ambient light.
In Section 2.2, we presented evidence that ambient light is not the
only important predictor of preferred screen brightness. To allow ad-
ditional contexts as inputs to our model, CAPED enables an arbitrary
number of contexts as input features, targeting screen brightness as
our predicted output. This proposed system is described in Figure 5b.

Thus far, we have been intentionally vague about this “adaptive
model” which is learning user brightness preferences with some
number of contexts as input. There are any number of possible
models which can be used to predict an output given some set of
inputs. Something as simple as a linear regression may be able to
accurately predict an output, or it may require a more advanced
general-purpose model such as support vector machines, or even
a non-linear model like decision trees. Furthermore, an adaptive
model doesn’t even need to be a general-purpose model; if some
amount of domain knowledge is available about the output, a hand-
crafted model may also be effective. Because we don’t know exactly
what model will best suit a given user, we don’t want to pre-select a
single adaptive model in our system. Instead, we employ the use of
several simultaneous learning models, each of which provides their
own outputs. This allows us to eventually prefer predictions from
the most accurate sub-models over those from the least accurate
ones. We more clearly define this system in the following section.

4.2 Online Model Composition

Given a set of learning models for predicting user brightness prefer-
ences from contextual data, we need a meta-algorithm to do online
selection of models to minimize prediction errors. Some models
may be better predictors for certain users and in some context. Auto-
matically inferring which model to use for prediction is a classical
online learning problem. Blum provides a detailed survey on on-
line learning, describing different techniques to select prediction
models adaptively [4]. One of the classes of online algorithms is
the weighted majority algorithm [14]. This algorithm is a binary
classification algorithm which contains a pool of individual binary
classifiers, each of which classifies data independently. In addition
to these independent classifications, each sub-algorithm contains a
weight. As training data is introduced to the sub-algorithms, these
weights are either increased or decreased in value by some func-
tion depending on if the classification was made correctly or not.
To classify a new piece of data, the weighted majority algorithm
calculates the weighted value of the “0” predictions to that of the
“1” predictions from each of the sub-algorithms. The prediction with
the higher weight is the selected prediction from the model. This al-
gorithm is useful to CAPED because the weighted majority algorithm
gives upper bounds on the number of incorrect predictions that the
meta-algorithm contains.

However, the weighted majority algorithm [14] only predicts
binary data; screen brightness is continuous data, and so we need to
modify the weighted majority algorithm to work with a non-binary
output. We use the continuous variant of the weighted majority
algorithm proposed by Vovk [20]. Instead of using the weighted
summation of each sub-model’s predictions, each prediction is
instead a weighted combination of the sub-models, where p is an
individual prediction, IV is the number of experts, w is a weight, and
f is an individual sub-model’s prediction, as shown in Equation (2).
The output from this formula is continuous rather than binary.

N
~ i wz‘,t71fi,t
Dt = Lz Wi fit 2

Zfil Wi, ¢
As new training data is added to the online meta-algorithm, the
weights on each sub-model are updated depending on how close
their prediction was to the result, where y is the actual outcome and
[ is some loss function:
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The most important piece of this algorithm for CAPED is the
upper bounds on accuracy that it provides. Because we don’t know in
advance which algorithms will most accurately predict user state, we
wish to allow this system to gravitate to the most accurate classifiers.
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Figure 5: Baseline and proposed adaptive brightness management.

Over time, the number of errors in the meta-algorithm is known to
converge to the number of errors in the best sub-algorithm. See [20]
for theoretical proof of convergence. Thus, given a sufficiently large
number of predictions, the meta-algorithm will not do worse than
any of the sub-models. This is represented by Equation (4), where
L represents the error from the online model composition, and .J is
the pool of experts.

In(N) @

t

In our specific implementation, since we include the manufac-
turer’s default brightness model as one of the sub-models, this im-
plies that on an average after adequate training points, we will not
perform worse than the default brightness model. This is important
in situations where none of the other sub-models are able to accu-
rately capture the user’s preferences, or if the user gives noisy inputs
to the system.

Another interesting side-effect of this meta-algorithm is that
the most heavily weighted sub-algorithms weights can change
throughout the system’s lifetime. Because a heterogeneous set of sub-
models are used in this system, it may happen that some algorithms
work sufficiently well with a small training set, while others work
better with a large training set. This allows the meta-algorithm to
prefer sub-models which have the best prediction accuracy, even if
the most accurate models change over time.

i/n S minLi,n +
icJ

4.3 CAPED System Architecture

In this section, we describe the specifics on how CAPED is integrated
with the Android Nexus 4’s operating system. A summary of this
architecture is shown in Figure 6.

CAPED is programmed entirely in Java, and exists as a user ap-
plication which manifests itself as a conglomeration of a number
of background services and user-facing activities. CAPED’s contex-
tual data gathering is accomplished via standard Android userspace
API calls. We described the motivation for including the various
contextual data in Section 2.2; we now give specifics as to how
these contexts are collected, and what data we specifically extract
from them. All of the contextual information that we gather are
from either on-board sensors, third-party Google APIs, or calculated
programmatically. The accelerometer, ambient light, and battery
contexts are all sourced from on-device sensors via the standard An-
droid application API. The activity characterization and raw location
data is obtained from Google’s location and activity characteriza-
tion APIs. We perform some additional calculations to cluster the
locations into clusters with a maximum radius of 0.5km. Finally,
on-screen time and the sun’s angle are calculated using the device’s

clock. Each of these contexts are calculated in their own individual
thread, which allows us to configure update rates individually.

CAPED’s meta-algorithm is implemented as follows. The meta-
algorithm contains a pool of sub-models, each which has a weight
associated with it. When a prediction is run, then all of the current
contextual data is packaged into a data structure, passed to all of the
sub-models individually, and each sub-model makes a prediction
using that contextual data. The predictions from all of the sub-
models are gathered, multiplied by their weights, and that result is
combined into one final meta-output.

We generate display brightness predictions at a rate of 1Hz. To
control the display brightness, we use API calls which manually
set the device’s screen state using the meta-algorithm’s meta. The
device’s default adaptive brightness system is disabled when CAPED
is active.

To add training data to CAPED, a button is displayed in the
device’s notification area. Selecting this button displays a dialog box
which allows the user to select their preferred brightness level. When
the user selects their preferred brightness level, a series of events
happen. First of all, that brightness indication is packaged up along
with the current contextual data. The sub-models then each run an
individual prediction (without using the new training data yet), and
depending on how close their prediction was to the actual preferred
output, the sub-models’ weights are updated accordingly. Finally,
the sub-models themselves are updated with the new training data.
None of the general purpose models we use are “updatable” models;
this means that with each new piece of training data, the adaptive
sub-models are rebuilt from scratch using the cumulative set of
training data. Using updatable models could optimize the amount of
time that it takes to add a new piece of training data, but wouldn’t
have any impact on the model accuracy. Even on larger training
sets (> 1000 instances), generating a sub-model takes less than a
second, and this only occurs when the user makes a new brightness
indication, so we don’t pursue updatable models in this work.

The general purpose sub-models are provided by the Java-based
Weka [8] machine learning library. Weka is shipped as a Java-based
machine learning solution with GUI support; this GUI support had
to be stripped out to be compatible with Android. We also include
the manufacturer’s default model as one of the sub-models. This
sub-model is completely static; it doesn’t change as new training
data is added.

We developed CAPED as a user application for the sake of
improved portability, rapid development, and ease of deployment
(allowing us to eventually distribute the application to the public).
However, there are some advantages that could be provided by
implementing this system at the platform level. First of all, a
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Figure 6: Integration of CAPED with the Android operating system.

platform-level implementation would allow for direct control of the
screen brightness. Manually controlling the brightness via API calls
means that the operating system ultimately controls the transition
between brightness levels. A platform-level implementation of
CAPED would allow for fine-grained control over the brightness
transitions, but these transitions are out of scope for this work.
Secondly, accessing the display’s image content at the application
level is a computationally intensive process which introduces severe
UI lag into the system when display content is analyzed at the
rates that our system requires. Platform-level access could make
the inclusion of screen content as a contextual input feasible by
reducing the CPU and bus bandwidth overhead of the calculations.
Finally, a platform-level solution could be more deeply integrated
into the brightness subsystem, which would allow us to hide more
of the complexity of the brightness controls and training from the
users.

5. Experimental Setup

In this section, we describe the experiments we conduct to measure
CAPED’s effectiveness. We perform user studies on a set of 10
smartphone owners. Participants were gathered via fliers advertising
the study.

Each of the users was provided with an Android Google Nexus
4 smartphone to use as their primary mobile device for the period of
one week. We used a standard device for all of the studies because
display brightness models vary between devices, and this allows us
to better understand the user preferences compared to the default
model. Users’ existing cell phone plan was used to provide data
access on the Nexus 4 device. The users were instructed to use
this device as if it was their own; they were allowed to install any
applications on the phone that they would typically use, and were
told to customize any additional settings on the device as they see
fit. CAPED is installed on each of the devices.

The number of users in this study was limited to 10 because the
study lasts a number of days per user, and because we provided the
equipment for the users. We wanted to have all users using the same
device model, not because of any technological limitation (CAPED
has been successfully run on many other models), but because we
wanted to analyze how different users interact with the same display
interface. Our sample size of 10, although not large enough to
precisely describe every way that a person could possibly interface
with CAPED, is certainly large enough to give results that show some
variety in users, while repeatedly demonstrating the effectiveness of
CAPED.

While they were using the device, the users were instructed
to indicate their preferred brightness levels whenever they were
dissatisfied with the display’s brightness. Each time the user made
a brightness selection, that preference, along with the current
contextual data, is added to CAPED’s training set.

CAPED uses four sub-models: the default Nexus 4 brightness
model, an SVM regression model, a linear regression model, and a
decision tree model. The default model is initially given a weight
of “1”, while the adaptive models are given weights of “0.0001”.
We weight the models this way because the default model has
been pre-calibrated to suit the average user, and we expect that
it will have the best accuracy without any training data provided. If
the generic machine learning models begin to predict brightnesses
more accurately than the default model, they will become more
highly weighted than the default model, and those predictions will
contribute more to the model’s output.

To better gauge how users perceive our brightness algorithm, we
split our study into a few different phases. During the first three
days of the study, CAPED is used to control the backlight brightness,
and the users’ brightness indications are used to train the model;
this is how CAPED would function in a real system. On the final four
days, two of the days use our brightness prediction model, and two
of the days solely use the manufacturer’s default brightness model,
in a randomized order. At the end of each of those 4 days, users
are asked to rate their satisfaction with the screen brightness during
the previous 24 hours. This allows us to subjectively gauge how
satisfied users were with CAPED.

To get more information about the user’s surrounding context, we
also log contextual data two times per minute. This data collection
is not at all tied to the user indications.

6. Results

In this section, we present our results for describing the effectiveness
of CAPED, and compare it to existing screen brightness models.

6.1 Prediction Accuracy Analysis

In this section, we describe the accuracy of CAPED, compared to the
accuracy of the default model. During the user study, each user was
asked to adjust their preferred brightness settings when they were
dissatisfied with the current brightness. For each of these preference
indications (and before using this data to update CAPED’s prediction
model), we collected the predicted brightness value for the given
contexts from the default and from CAPED. From these predictions,
we calculated the error for both models, for each indication. These
errors were then averaged and are presented in Figure 7.
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Across all users, the average error of the default model is -86.03,
while the average error of CAPED is -0.05. The mean reduction in
absolute prediction error, averaged from each user’s errors, is 41.9%.
Although Figure 7 shows that the default model typically does
underpredict the user’s brightness requirements, it does not mean
that simply increasing the default model’s brightness curve would
cause the system to perform as accurately as CAPED. It isn’t the
common case, but there are many instances where CAPED predicts
a brightness lower than the default model, while remaining more
accurate than the default model.

It is important to also consider the effectiveness of using a meta-
algorithm with multiple sub-models, rather than just using a single
adaptive model. For a majority of the users, the progression of
the weights for each sub-model tends to follow the same general
pattern. The default classifier always begins with the highest weight,
since we manually initialize the sub-models as such. Since the
user requirements typically significantly differ from the default
classifier, as the users continue to train the meta-algorithm, one or
both of either the SVM regression or the linear regression models
quickly becomes more heavily weighted than the default classifier.
Furthermore, the decision tree model was overall the most accurate
classifier, but only with a relatively high number of indications
(at least 15-20 or so). Hence, the decision tree’s weight typically
remains relatively low until a sufficient amount of training data is
provided. This weight trend isn’t identical for all users, as some
users behaved more linearly than others, but was the most common
case.

This progression of the sub-model weights shows the merit of
using multiple sub-models, rather than only one. The most accurate

sub-model tends to change over time; the linear models typically
perform better with a small amount of training data, while the
more complex models tend to perform better with larger data sets.
Thus, the best model is actually a combination of the subclassifiers.
Furthermore, it is common (in 70% of cases) for multiple classifiers
to contribute significant weights to the prediction at the end of
the week-long study, rather than completely converging to a single
model. This furthers the case for using multiple sub-models.

6.2 Impact of Contextual Data Inclusion

In this section, we describe the impact that the inclusion of addi-
tional contextual data has upon the overall prediction accuracy. To
accomplish this, we run an offline analysis of the user brightness
preference and indication data. Using an exhaustive subset analysis,
we determine the subset of contexts for each user which maximizes
that user’s brightness value prediction accuracy. We then compare
the absolute error of running predictions with this optimal subset
to the error of running predictions using ambient light as the sole
contextual feature. This method allows us to see how much the
accuracy can be improved via additional contextual data, as well as
determine which contexts have the most predictive power. Using
this analysis, we find that using the optimal subset of contexts has
a 14.5% lower error rate than using just ambient light as the sole
input.

In Figure 8, we present how frequently each given context is
included in the various users’ optimal subsets. To calculate this,
we simply take each user’s optimal context subset and count how
many times each context is included in the optimal user models.
Expectedly, ambient light is one of the most important predictive
contexts, but additionally both the current location and the position
of the sun are frequently included in the optimal subset model. The
motion of the device seems to have a very low level of predictive
power.

6.3 User Rating Comparison

For the final four days of the study, two of the days control the
display using the default mode, while two of the days use CAPED.
Specifically, at the start of each day, we select the model for that
day randomly (the users are unaware of this change). The random
selection continues until one of the schemes is selected twice, after
which point we continue with the other method for the remainder of
the 4 days. At the conclusion of each day, the system prompts the
user to rate their satisfaction with the system’s brightness between 1
and 5, with 5 being the most satisfied. The average ratings for each
model and each user are presented in Figure 9.

As the figure shows, CAPED universally either doesn’t impact
ratings, or improves them. Also interestingly, in general the users
with the largest increase in rating tend to be the users with the
largest improvement in mean prediction error. This suggests that
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the prediction error is, indeed, a strong contributor to satisfaction
with the screen brightness. On average, CAPED improves the default
scheme’s subjective user satisfaction rating from 3.4 to 4.2, or a
0.8-point (23.5%) improvement on a 5-point scale.

6.4 System Overhead

The primary design goal for CAPED was to accurately predict the
preferred screen brightness; we intentionally allow CAPED to exceed
the default model’s brightness levels if it is closer to the user’s
preferences. As Figure 7 suggests, CAPED tends to exceed the
default model’s brightness levels. Additionally, as one would expect,
the contextual data collection and prediction systems of CAPED
have an additional impact on the device’s power consumption.
Because increased power consumption is a concern on any battery-
constrained device, in this section we examine CAPED’s impact on
power.

During the user studies, we periodically logged the device’s
contextual data. Even though only one of either CAPED or the default
model can be active at a time, we can use the contextual data to
“replay” what the screen brightnesses would be over the same periods
of time. We additionally generate a linear model which relates the
screen’s brightness to the amount of current being discharged from
the battery. We create this model by gathering amperage data from
the Nexus 4’s internal current sensor (part of the device’s power
management IC) at a variety of backlight brightness levels. This
model, along with the brightness data of the two schemes, allows
us to determine the difference in power consumption due to screen
brightness between the two schemes over time. From this data, we
then integrate the current flow to find the total difference in mAh
(milliamp hours) between the models for each user per day, using
their actual usage trends. Finally, because the Nexus 4’s battery has
a known capacity of 2100mAh, we then calculate the difference in
the percentage of the total battery capacity that is consumed by the
screen per day.

CAPED slightly increases the screen’s power consumption for all
users. Across our participants, the smallest increase in daily battery
capacity usage is 0.5%, while the largest increase in daily battery
capacity usage is 5.5%. On average, CAPED will cause the screen
to consume an additional 2.1% of the total battery capacity per
day due to increased screen brightness. This is a small increase in
power compared to the display’s overall power consumption [19].
On average, each user used the Nexus 4 device for 55 minutes each
day. Although there is a general correlation between on-screen time
duration and increased battery consumption, it interestingly is still
heavily dependent on the individual users’ brightness preferences
and contextual data. For example, one user had a daily on-screen
average of 149 minutes with a total daily battery consumption
increase of 3.5%, while another user had a daily on-screen average
of 49 minutes, with a 5.5% battery consumption increase.

Another source of power overhead is with regard to the prediction
system itself. We compared the system’s idle current draw while the
screen was active and set to minimum brightness, with and without
CAPED installed. Without CAPED installed, we found the Nexus
4’s average idle current draw to be 212mA. Collecting the same
data, but with CAPED running predictions and collecting contextual
data, the average current draw is 280mA. However, the majority
of this increase is due to the activity characterization collector;
with this piece of contextual data disabled, CAPED only draws
228mA. It’s important to note that CAPED only increases power
consumption while the display is actually on; the majority of the
time, the devices weren’t actively used. Because of this, the amount
of total daily battery capacity consumed by CAPED is 2.83% on
average with activity characterization, and only 0.67% with activity
characterization disabled.

There is also a system overhead that applies to the users them-
selves; a training system which requires constant interaction but
improves the prediction accuracy could still reduce the user’s overall
satisfaction with the system. On average, users adjusted the display
brightness 4.4 times per day when CAPED was active. This training
set size, which is small in terms of typical data mining applications,
suggests that is possible to get accurate brightness predictions with-
out requiring a high number of user indications. In addition, we
believe that the number of user inputs will drop down even further
once CAPED has sufficiently learned the user requirements.

7. Related Work

An orthogonal area of research to our work is studying ways of
improving the readability of displays at a given backlight level,
rather than focusing on better predicting the best backlight level. Zhu
et al. [22] provide an interesting survey of the design implications
and characteristics of transflective LCD displays. Lee et al. [13]
describe a hybrid display which uses either an OLED display or a
transflective LCD display depending on the amount of ambient light
available.

Some work which reiterates the need for user perception-based
display brightness is given by Guterman et al. [7], which analyzes
user preferences of display panel brightness. Their primary result
is that brighter display panels are not always preferable, and that
overly bright displays can be actually less preferred.

Some works focus on other ways of using context or online learn-
ing to optimize various aspects of the computing experience. Krause
et al. [11] describe a method of learning user preferences of system
volume from an array of biological sensors. Shye et al. [18] use an
array of sensors while gradually reducing processor frequency until
a significant change in the sensor readings is detected. Seshia [17]
proposes a reactive system which utilizes online learning of system
state to aid in error recovery. Although these works have considered
user satisfaction in system-level decision making (i.e., scheduling,



dynamic voltage and frequency scaling, etc.), none of them focused
on screen properties, which is the focus of our work.

8. Conclusion

In this paper, we proposed CAPED, a system which enables person-
alized, context-aware screen brightness predictions. We outlined
the necessity of an intelligent brightness control model, and im-
plemented our system as a userspace application. We then ran user
studies to gauge the accuracy of our system’s predictions. Our results
showed that the manufacturer’s default model for predicting user
screen brightness is insufficient for many users, and showed that we
can increase the mean absolute prediction accuracy by 41.9%, and
improve the user’s average satisfaction with the display brightness
levels by 0.8 points on a 5-point scale.

As the focus of personal computing devices continues its shift of
focus from raw power and specs to device usability, we believe that
the user experience will be one of the most important ways for device
manufacturers to differentiate themselves. That shift in manufacturer
focus reflects a shift in user focus as well — a significant number of
users want devices to suit them, rather than having to micromanage
every aspect of their electronic devices. This increased need for
automatic preference configuration and prediction lends itself well
to on-device online learning systems.

We also believe that there are many other mobile subsystems
which could benefit from online learning.

9. Acknowledgements

This work is supported by an Intel URO Energy Smart SoC Program
grant and by NSF grants CCF-0916746 and CCF-0747201. The
authors would also like to thank the user study volunteers for their
participation in this study.

References

[1] Larger screens and improved resolution drive growth in smartphone
displays, according to NPD DisplaySearch. URL http://www.prweb.
com/releases/2013/6/prweb10850494 . htm.

[2] CIE 145:The correlation of models for vision and visual performance.
Standards Technical Report 145, 2002.

[3] M. Alpern and N. Ohba. The effect of bleaching and backgrounds
on pupil size. Vision Research, 12(5):943-951, May 1972. ISSN
0042-6989. . URL http://wuw.sciencedirect.com/science/
article/pii/0042698972900168.

[4] A. Blum. On-line algorithms in machine learning. In In Proceedings
of the Workshop on On-Line Algorithms, Dagstuhl, pages 306-325.
Springer, 1996.

[5] D. Cline, H. W. Hofstetter, and J. R. Griffin. Dictionary of visual
science. Butterworth-Heinemann, Boston, MA, 4th edition, 1997. ISBN
0-7506-9895-0.

[6] J. E. Duffy, R. E. Kronauer, and C. A. Czeisler. Phase-shifting
human circadian rhythms: influence of sleep timing, social contact
and light exposure. The Journal of Physiology, 495(Pt 1):289-297,
Aug. 1996. ISSN 0022-3751, 1469-7793. URL http://jp.physoc.
org/content/495/Pt\_1/289. PMID: 8866371.

[7] P. S. Guterman, K. Fukuda, L. M. Wilcox, and R. S. Allison.
75.3: Is brighter always better? the effects of display and ambi-
ent luminance on preferences for digital signage. In SID Sym-
posium Digest of Technical Papers, volume 41, page 11161119,
2010. URL http://onlinelibrary.wiley.com/doi/10.1889/
1.3499851/abstract.

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The WEKA data mining software: An update. In SIGKDD
Explorations, volume 11, 2009.

[9] H. Hashemi, M. Khabazkhoob, E. Jafarzadehpur, M. H. Emamian,
M. Shariati, and A. Fotouhi. Contrast sensitivity evalua-

tion in a population-based study in shahroud, iran. Oph-
thalmology, 119(3):541-546, Mar. 2012. ISSN 0161-6420.
. URL http://www.sciencedirect.com/science/article/
pii/S0161642011007950.

[10] E. F. Kelley, M. Lindfors, and J. Penczek. Display daylight
ambient contrast measurement methods and daylight readability.
Journal of the Society for Information Display, 14(11):10191030,
2006. URL http://onlinelibrary.wiley.com/doi/10.1889/
1.2393026/abstract.

[11] A. Krause, A. Smailagic, and D. P. Siewiorek. Context-aware mobile
computing: Learning context-dependent personal preferences from a
wearable sensor array. Mobile Computing, IEEE Transactions on, 5(2):
113127, 2006. URL http://ieeexplore.ieee.org/xpls/abs\
_all. jsp?arnumber=1563997.

[12] B. M. Kudielka, I. S. Federenko, D. H. Hellhammer, and S. Wst.
Morningness and eveningness: The free cortisol rise after awakening
in early birds and night owls. Biological Psychology, 72(2):141-146,
May 2006. ISSN 0301-0511. . URL http://www.sciencedirect.
com/science/article/pii/S0301051105001407.

[13] J.-H. Lee, X. Zhu, Y.-H. Lin, W. K. Choi, T.-C. Lin, S.-C. Hsu, H.-Y.
Lin, and S.-T. Wu. High ambient-contrast-ratio display using tandem re-
flective liquid crystal display and organic light-emitting device. Opt. Ex-
press, 13(23):94319438, 2005. URL http://1lcd.creol.ucf.edu/
publications/2005/0pt\%20Express\%20Lee\%200LED. pdf.

[14] N. Littlestone and M. Warmuth. The weighted majority algorithm. In,
30th Annual Symposium on Foundations of Computer Science, 1989,
pages 256261, 1989. .

[15] J. W. Miller. Study of visual acuity during the ocular pursuit of
moving test objects. II. effects of direction of movement, relative
movement, and illumination. J. Opt. Soc. Am., 48(11):803-806, Nov.
1958. . URL http://www.opticsinfobase.org/abstract.cfm?
URI=josa-48-11-803.

[16] P. Ranganathan, E. Geelhoed, M. Manahan, and K. Nicholas. Energy-
aware user interfaces and energy-adaptive displays. Computer, 39
(3):3138, 2006. URL http://ieeexplore.ieee.org/xpls/abs\
_all.jsp?arnumber=1607946.

[17] S. A. Seshia. Autonomic reactive systems via online learning. In
Proceedings of the IEEE International Conference on Autonomic
Computing (ICAC). IEEE Press, June 2007.

[18] A. Shye, Y. Pan, B. Scholbrock, J. S. Miller, G. Memik, P. A. Dinda,
and R. P. Dick. Power to the people: Leveraging human physiological
traits to control microprocessor frequency. In Microarchitecture, 2008.
MICRO-41. 2008 41st IEEE/ACM International Symposium on, page
188199, 2008. URL http://ieeexplore.ieee.org/xpls/abs\
_all. jsp?arnumber=4771790.

[19] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying
real user activity patterns to guide power optimizations for mobile
architectures. In Proceedings of the 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, page 168178, 2009. URL
http://dl.acm.org/citation.cfm?id=1669135.

[20] V. Vovk and V. Vovk. A game of prediction with expert advice. Journal
of Computer and System Sciences, 56:153-173, 1997.

[21] C. Wiley. The new generation digital display inter-
face for embedded applications, Dec. 2010. URL
http://www.vesa.org/wp-content/uploads/2010/12/
DisplayPort-DevCon-Presentation-eDP-Dec-2010-v3.pdf.

[22] X. Zhu, Z. Ge, T. X. Wu, and S.-T. Wu. Transflective liquid crystal
displays. Journal of Display Technology, 1(1):15-29, Sept. 2005.
ISSN 1551-319X. . URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1498782.




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move right by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Right
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 18.00 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     18.0000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



