

Electrical Engineering and Computer Science Department

Technical Report
NWU-EECS-06-07

July 30, 2006

Putting the User in Direct Control of CPU Scheduling

Bin Lin Peter A. Dinda

Abstract

CPU scheduling to enforce service-level agreements (SLAs) is a problem of key
importance in service-oriented systems. For services whose ultimate customers are naive
end-users, it is often a significant challenge simply to determine the terms of the SLA.
We propose a new approach to both SLA specification and scheduling for enforcement
that is unique in that it is based around the use of direct user input. Our implementation
of the idea is designed for virtual machine (VM)-based computing environments. In our
system, a user's VM is scheduled as a periodic real-time task. The user can
instantaneously manipulate his VM's schedule using a joystick. An on-screen display
illustrates the current schedule's cost and indicates when the user's desired schedule is
impossible due to the schedules of other VMs or resource constraints. An extensive user
study of the system indicates that even a naive user is capable of using the interface to
our system to find a schedule that balances cost and the comfort of his VM. Good
schedules are user- and application-dependent to a large extent, illustrating the benefits of
user involvement.

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ANI-0301108, and EIA-
0224449. Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of the National Science Foundation (NSF).

Keywords: Adaptive systems, CPU scheduling, human-computer interaction

Putting the User in Direct Control of CPU Scheduling

Bin Lin Peter A. Dinda
{binlin,pdinda}@cs.northwestern.edu

Department of Electrical Engineering and Computer Science, Northwestern University

Abstract
CPU scheduling to enforce service-level agreements
(SLAs) is a problem of key importance in service-
oriented systems. For services whose ultimate customers
are naive end-users, it is often a significant challenge
simply to determine the terms of the SLA. We propose
a new approach to both SLA specification and schedul-
ing for enforcement that is unique in that it is based
around the use of direct user input. Our implementation
of the idea is designed for virtual machine (VM)-based
computing environments. In our system, a user’s VM is
scheduled as a periodic real-time task. The user can in-
stantaneously manipulate his VM’s schedule using a joy-
stick. An on-screen display illustrates the current sched-
ule’s cost and indicates when the user’s desired schedule
is impossible due to the schedules of other VMs or re-
source constraints. An extensive user study of the sys-
tem indicates that even a naive user is capable of using
the interface to our system to find a schedule that bal-
ances cost and the comfort of his VM. Good schedules
are user- and application-dependent to a large extent, il-
lustrating the benefits of user involvement.

1 Introduction

Service-oriented systems must schedule resources such
as the CPU so that the relevant service-level agreements
(SLAs) are honored. Increasingly, service-oriented com-
puting is targeting end-users by providing services that
are more and more akin to those available on typical in-
teractive desktop computers. With the push toward the
desktop, we are faced with increasingly naive users and
shorter duration tasks. An important challenge emerges:
what is an appropriate SLA in a desktop replacement en-
vironment and how do we get it?

We are investigating a general approach to this prob-
lem that combines resource scheduling techniques that
expose direct control inputs, a cost model, and appropri-
ate user interfaces to match the control inputs and the

cost model to naive users. We bring such direct user
input into the scheduling process because it has been
demonstrated that tolerance for different schedules in
desktop environments is highly application- and user-
dependent. Simply put, desktop users are extremely di-
verse in their demands.

In this paper, we focus specifically on scheduling vir-
tual machines (VMs) that support interactive desktop
users on the CPU of a provider machine. We propose,
implement, and evaluate a unique new approach to CPU
scheduling that is based on direct user input, even from
users who know nothing about scheduling and don’t want
to learn. As far as we are aware, there is currently no
scheduling approach that incorporates explicit input sup-
plied directly by even naive users.

Our work takes place in the context of Virtuoso, a sys-
tem for utility computing that is based on VMs intercon-
nected with overlay networks [42, 38, 41, 21, 15, 43].
Each provider computer in the system can support multi-
ple VMs, each of which can run a different operating sys-
tem. A typical interactive user uses a VM loaded with an
operating system such as Microsoft Windows and com-
municates with it using a thin client [37, 20] running a re-
mote display system [35, 36]. Each user will see a slowed
machine due to resources committed to other users.

All the VMs on a provider computer are scheduled as
periodic real-time tasks. We summarize the design of
our real-time scheduling system here, but our focus is on
an interface to the system that is intended to allow even
naive users to exploit it. The user of a VM can contin-
uously adjust its schedule using an interface akin to a
two-dimensional throttle (a joystick), up to the resource
limits and the constraints of the other VMs. As he adjusts
the schedule, an on-screen display shows the cost of the
current schedule.

Through an extensive user study, we find that this
interface lets all users cleanly trade off between com-
fort and cost, appropriately customizing their schedules
without knowing anything about CPU scheduling. In

1

other words, our interface provides an effective means
for users to express their diverse CPU needs and have
the system meet them.

We strongly believe that the overall approach of incor-
porating direct user input into resource scheduling will
extend to other resources, combinations of resources,
distributed systems, and autonomic computing.

2 Related work

Systems researchers have proposed a wide range of
scheduling approaches to attempt to automatically opti-
mize both for responsiveness and utilization. Examples
include the BSD Unix scheduler [28], lottery schedul-
ing [44], weighted fair queuing and its derivatives [3],
BVT [9], SRPT scheduling [2], and periodic [23, 17]
and sporadic [24] hard real-time models, as well as soft
real-time models for multimedia [6, 31]. In some mod-
els, user interaction is included implicitly and indirectly
in scheduling decisions. For example, the Unix sched-
uler provides a temporary priority boost to processes that
have become unblocked. Since a typical interactive pro-
cess blocks mostly waiting for user input, the boost gives
it the effect of responding quickly, even in a system that
is experiencing high load.

Direct user input is represented as well. For example,
early work [27, 8] used on-screen buttons that encapsu-
lated code to tailor of applications UIs. Weighted fair
queuing allows users to explicitly weight each of their
processes, controlling the CPU share given to each. Mi-
crosoft Windows allows a user to specify the scheduling
class of a process. By raising the scheduling class of a
process from “Normal” to “Above Normal”, he assures
that Windows’ fixed priority scheduler will always run
his process in preference to “Normal” processes that are
also ready to run. As another example, Unix systems pro-
vide the “nice” mechanism to bias Unix’s dynamic prior-
ity scheduler. All of the direct user input mechanisms we
are aware of, however, require that the user understand
the scheduler to get good results. Indeed, with sched-
ulers like the Windows scheduler, it is very easy for a
user to live-lock the system if he doesn’t know what he’s
doing. Ours is the first scheduling system to incorporate
direct user input from even naive users.

Using direct user input in the scheduling process
would appear to be in the purview of human-computer
interaction research and psychology. However, the work
in those areas has concentrated on the impact of latency
on user-perceived utility of the system [19, 10], and on
user frustration with different user interfaces [18, 34].
Within the systems community, related work has ex-
amined the performance of end-user operating systems
using latency as opposed to throughput [11], and sug-
gested models for interactive user workload [4]. Recent

work has also demonstrated using careful user studies
that many programs can be modified by naive program-
mers to support limited adaptation [1]. However, there
are no results on using direct user input from even naive
users to guide the scheduler.

The importance and challenge of determining appro-
priate SLAs or quality of service (QoS) constraints has
been recognized within the adaptive applications and
autonomic computing communities. Adaptive applica-
tion frameworks such as Odyssey [32], QuOin [46], and
Amaranth [16] assume that SLAs or QoS constraints
are supplied to them. Many forms for this information
have been proposed, including composable utility func-
tions [33], decision procedures [5], and aspects [26]. Our
work relates in two ways. First, it presents a way of dis-
covering appropriate SLAs from end-user input. Second,
it shows that it is possible to avoid such intermediate rep-
resentations, tying the end-user directly to the schedul-
ing/optimization process.

Autonomic computing seeks to either automate
the management of computer systems or simplify
administrator-based management of them. Some work
in this area has focused on direct interaction with the
administrator, including capturing the effects of opera-
tor error [29], exposing debugging of configurations as a
search process [45], adjusting cycle stealing so as to con-
trol impact on users [40], and using performance feed-
back to the administrator to help adjust policy [25]. As
far as we are aware, however, no work in autonomic com-
puting directly incorporates the end-user.

3 User diversity

It is important that we spend some time summarizing re-
sults from our previous paper [14] and why they motivate
direct user input in resource schedulers.

Our previous paper described a double-blinded, con-
trolled intervention study of the effects of resource con-
tention on the comfort of the users of typical interac-
tive desktop applications on Microsoft Windows. The
resources studied were CPU bandwidth, disk bandwidth,
and physical memory. The applications used were iden-
tical to those described in Section 6. 38 users, in-
cluding graduate students, undergraduates, and staff at
Northwestern University participated. The users were
recruited and selected in a similar manner to that of Sec-
tion 6, and most were not knowledgeable about resource
scheduling. In the study, a user was instructed to carry
out a given task (e.g., replicate a drawing using Power-
point), and to press a “discomfort button” if she felt the
computer was operating uncomfortably. While the user
carried out the task, we applied randomly selected re-
source contention profiles for the three resources. These
profiles included a blank profile (the “placebo”), ramp

2

functions (contention gradually increases with time), and
step functions (contention abruptly increases at a point in
time). Users were unaware of the specifics of the study
(i.e., that we were subjecting them to differing resource
contentions), and the proctors were unaware of the pro-
file ordering for any user. The machines used were hid-
den, and the UI was modified so that the user could not
determine the degree of contention other than the slow-
down or jitter it induced in the application.

Analyzing the contexts in which users indicated dis-
comfort resulted in a range of qualitative and quantitative
conclusions. The observation that users were generally
quite intolerant to jitter led to the choice of a periodic
real-time scheduling model in Virtuoso, described in the
next section. Users were far more sensitive to restrictions
or variations in CPU bandwidth than disk or memory.

There was a large variation in the acceptable CPU
contention among users, applications, and users and ap-
plications taken jointly. The CPU contention at which
≤ 5 % of users were uncomfortable differed by a factor
of 17 from the least sensitive application (Word) to the
most sensitive one (Quake II); equivalent tolerable av-
erage slowdowns range from 4.1 to 1.2. Because each
user conducted a self-rating of her familiarity with Win-
dows and our various applications before participating,
we could analyze diversity among self-defined classes
of users. Again studying the CPU contention at which
≤ 5 % of users are uncomfortable, we found signifi-
cant (p ≤ 0.031) differences in tolerable contention and
slowdown ranging from 0.2 to 1.1 among the various
groups defined by the self-rating. The necessarily limited
amount of data available from a user study such as this
forces us to draw only qualitative conclusions about the
users and applications taken jointly. However, clearly, it
is the user who chooses the application in a desktop en-
vironment and thus is the dominant source of variation.

The key conclusion of the study with respect to the
present paper is that there is considerable diversity in the
tolerance that users have for resource contention. This
diversity argues for per-user tailoring of utility functions
and/or SLAs, and leads to the question we address in this
paper: How do we accomplish this per-user tailoring?
We now show how to answer this question for the specific
case of CPU scheduling.

4 Scheduling VMs in Virtuoso

Virtuoso is middleware for virtual machine-based utility
computing that for a user very closely emulates the ex-
isting process of buying, configuring, and using an Intel-
based computer, a process with which many users and
certainly all system administrators are familiar. In Virtu-
oso, the user visits a web site, much like the web site of
Dell or IBM or any other company that sells Intel-based

computers. The site allows him to specify the hardware
and software configuration of a computer and its per-
formance requirements, and then order one or more of
them. The user receives a reference to the virtual ma-
chine which he can then use to start, stop, reset, and clone
the machine. The system presents the illusion that the
virtual machine is right next to the user. The console dis-
play is sent back to the user’s machine, the CD-ROM is
proxied to the user’s machine’s CD-ROM, and the VM
appears to be plugged into the network side-by-side with
the user’s machine. The user can then install additional
software, including operating systems.

Virtuoso connects users with providers. A provider
makes physical computers available on which users’
VMs can be executed. A single physical computer can
host multiple VMs.

A Virtuoso provider uses VMware GSX Server as its
virtual machine monitor (VMM). GSX is a “type II”
VMM [12], meaning that it executes as a process on
an underlying operating system, Linux in our case. By
scheduling the process, we schedule all the activity oc-
curring inside the VM (all the applications running in a
VM whose operating system is Microsoft Windows, for
example) as a single unit.

Virtuoso uses the periodic real-time model as a uni-
fying abstraction to describe the needs of diverse work-
loads and then schedule them. In the periodic real-time
model, a task is run for slice seconds every period sec-
onds. Using earliest deadline first (EDF) schedulabil-
ity analysis [23], the scheduler can determine whether
some set of (period , slice) constraints can be met. The
scheduler then simply uses dynamic priority preemptive
scheduling with the deadlines of the admitted tasks as
priorities.

VSched, which is described in detail in a previous pa-
per [22], is a user-level implementation of this approach
for Linux that offers soft real-time guarantees. It runs
as a Linux process that schedules other Linux processes.
We use it here to schedule the VMs on the host com-
puter. VSched supports (period , slice) constraints rang-
ing from the low hundreds of microseconds (if certain
kernel features are available) to days. Using this range,
the needs of both highly interactive VMs and long run-
ning batch VMs can be described and accommodated.

An important design criterion for VSched is that a
VM’s constraints can be changed very quickly (in about
a millisecond) so that an interactive user can change his
VM’s performance immediately.

4.1 Implementation

VSched consists of a server and a client, as shown in
Figure 1. The VSched server is a daemon running on
Linux that spawns the scheduling core, which executes

3

TCP

Scheduling
Core

SCHED_FIFO
Queues

Shared
Memory

PIPE
Server
module

Admission
Control

API
Calls

Linux kernel

SSL

VS*** Client

VI*** Front-end

VS***
Server

98

97

99

SCHED_FIFO Priority

Figure 1: Structure of VSched.

the scheduling scheme described above. The VSched
client communicates with the server over a TCP connec-
tion that is encrypted using SSL. Authentication is ac-
complished by a password exchange. The server commu-
nicates with the scheduling core through a shared mem-
ory array and signaling.

Client interface Using the VSched client, a user can
connect to VSched server and request that any process
be executed according to a period and slice. Virtuoso
keeps track of the pids used by its VMs. In response to
such a request, the VSched server determines whether
the request is feasible. If it is, it will add the process to
the array and inform the scheduling core.

Admission control VSched’s admission control algo-
rithm is based on the admissibility test of the EDF al-
gorithm. Instead of trying to maximize the total uti-
lization, we allow the system administrator to reserve
a certain percentage of CPU time for non-real-time
(SCHED OTHER) processes. The percentage can be set
by the system administrator when starting the VSched
daemon.

Scheduling core The scheduling core is a modified
EDF scheduler that dispatches processes in EDF order
but interrupts them when they have exhausted their allo-
cated CPU for the current period. If configured by the
system administrator, VSched will stop the processes at
this point, resuming them when their next period begins.

When the scheduling core receives scheduling re-
quests from the server module, it will interrupt the cur-
rent task and make an immediate scheduling decision
based on the new task set. The scheduling request can

be a request for scheduling a newly arrived task or for
changing a task that has been previously admitted.

Employed mechanisms The three highest priorities of
SCHED FIFO, the highest priority scheduling class in
Linux, are reserved for VSched use. The scheduling
core is run as the highest priority SCHED FIFO process
on the system, assuring that when it becomes runnable,
it immediately is given the CPU. The server module is
run as SCHED FIFO with the next highest priority so
that it will immediately service new requests whenever
the scheduling core is not running. The scheduling core
assigns the process that it currently wants to run the
third highest SCHED FIFO and (optionally) sends it a
SIG CONT. The process that is being switched away
from is assigned an ordinary SCHED OTHER priority.
If the administrator has configured hard limiting on its re-
source use, it is also sent a SIG STOP, otherwise VSched
operates as a work-conserving scheduler with respect to
its admitted processes.

The mechanisms of VSched and scheduling in Virtu-
oso are described in much more detail our earlier paper
and the software itself is publicly available. The UI soft-
ware we describe next is available from the authors.

4.2 Performance isolation

Most variants of the Linux kernel, including the one we
use in this paper, do not provide bounded ISR times and
can suffer from priority inversion, it is impossible to pro-
vide hard real-time support, and VSched does not claim
to. Nonetheless, as we report in our earlier paper, its soft
real-time behavior is quite good, rarely missing deadlines
and only then by very small amounts. We also demon-
strate that VSched effectively isolates VMs, and that, de-
spite only controlling CPU, it serves to effectively throt-
tle I/O as an indirect effect. Physical memory isolation is
provided by the VMM we use.

5 User interface

We have developed a graphical interface to allow even
a naive user to easily use VSched to set an appropri-
ate (period , slice) constraint for his Windows VM. The
tool indicates to the user the cost of his current sched-
ule and allows him to directly manipulate (period , slice).
VSched can change the schedule of a VM in about a mil-
lisecond, allowing for very smooth control.

The holy grail for such an interface is that it be invis-
ible or non-intrusive until the user is unhappy with per-
formance, and then can be nearly instantly manipulated
to change the schedule. We have explored several pos-
sible interfaces, including an on-screen interface (slid-
ers), a centering joystick, a centering joystick with force

4

(a) GUI (b) Force Feedback Joystick

(c) Non-centering Joystick (d) Precision Non-centering Joystick

Figure 2: Control interface. The combination of (a) and
(c) is used in our study.

feedback1, a non-centering joystick, and a precision non-
centering joystick. These interfaces are illustrated in Fig-
ure 2. We are also looking at trackballs, throttle con-
trollers, and knob controllers.

Although we considered many different interfaces,
non-centering joysticks appear to be the best option. In
such a joystick, the control stalk maintains its current
deflection even after the user removes his hand. The
horizontal and vertical deflection are mapped into in-
creasing period (left to right) and increasing utilization
(slice/period) (bottom to top). Note that all positions of
the joystick correspond to valid schedules.

In the following, we use a low precision non-centering
joystick. In particular, we modified a cheap centering
joystick (a variant of Figure 2(b)) to produce a non-
centering joystick (Figure 2(c)) by removing a spring.
This joystick is not as precise as a precision non-
centering joystick (Figure 2(d)), but using it serves two
purposes. First, it demonstrates that the interface can be
quite inexpensive (<$10 versus >$200 for the precision
joystick). Second, the joystick need not offer high preci-
sion to be useful (the precision joystick has an order of
magnitude more levels both vertically and horizontally).

The interface shows the cost of the current schedule
(which can be changed in milliseconds). The specific

1The idea here is to physically convey to the user when he is asking
for (period , slice) constraints that are impossible due to the lack of
hardware resources on the machine or to conflicting constraints from
other VMs.

cost function that is used is

cost = 100 ×
(

slice
period

+ β × overhead
slice

)

Where overhead is the time to execute the scheduling
core of VSched once. The purpose here is to capture the
fact that as slice declines, more time is spent in VSched
and the kernel on behalf of the process. For typical user-
selected schedules for interactive VMs, the influence of
the overhead is minimal, and the cost is effectively the
utilization of the user’s VM.

6 User study

We conducted a user study to determine whether end-
users could use our interface to find schedules for their
interactive VMs that were comfortable, and to determine
whether users could trade off between cost and comfort
using the interface.

6.1 Particulars

The 18 users in our study consisted primarily of grad-
uate students and undergraduates from the engineering
departments at Northwestern University, and included
two participants who had no CS or ECE background.
None of the users were familiar with real-time schedul-
ing concepts. We advertised for participants via flyers
and email, and vetted respondents to be sure they were
at least slightly familiar with the common applications
we would have them use. Each user was given $15 for
participating.

The test machine was a Dell Optiplex GX270 (2 GHz
P4, 512 MB, 80 GB, 17” monitor, 100 mbit Ethernet).
The machine ran:

• VMware GSX Server 3.1

• VSched server running as a daemon,

• VM running Windows XP Professional, the appli-
cations (Microsoft Word 2002, Powerpoint 2002,
Internet Explorer 6.0, Quake II), and our interface,
and

• Logitech WingMan Attack 2 Joystick modified to
be non-centering, as described earlier.

The VM was run in full-screen mode and the users were
not told that they were using virtualization. The smallest
slice and period possible were 1 ms, while the largest
were 1 s.

5

6.2 Process

During the study, the user used the Windows VM for
four tasks: word processing, presentation creation, web
browsing, and game playing. Each task was 15 minutes
long with 5 minutes for each of three sub-tasks. We
asked users to answer some questions (described later)
after each sub-task. We also video-taped users during
the study, and the users were told that the video tape and
other mechanisms would allow us to determine their de-
gree of comfort during the study independently of the
questions we were asking them. This mild use of de-
ception, a widely used technique in psychological re-
search [39], was employed to decrease the likelihood that
study participants would lie or operate the system less
aggressively than they might outside of the study.

From the user’s perspective, the study looked like the
following. At the beginning of each task and subtask,
the joystick was recentered, corresponding to a 500 ms
period with a 50% utilization. The intent was to force
the user to manipulate the joystick at least once, since
for all of the applications, this schedule was intolerable
to us.

1. Adaptation Phase I (8 minutes): The user acclima-
tized himself to the performance of the Windows
VM by using the applications. Questions:

• Do you feel you are familiar with the perfor-
mance of this computer? (Y/N)

• Are you comfortable with these applications?
(Y/N)

2. Adaptation Phase II (5 minutes): The user accli-
matized himself to the VSched control mechanism,
Figures 2(a) and (c). The user listened to MP3-
encoded music using Windows Media Player and
noticed how the playback behavior changed when
he moved the joystick. At the beginning of this
stage, the proctor told the user that moving the joy-
stick would change the responsiveness of the com-
puter and that, in general, moving the joystick to the
upper-right would make the machine faster, while
moving the joystick to the lower left would slow
the machine down. However, the proctor also told
them that the control was not a simple linear con-
trol, that all joystick positions are valid, and that the
user should do his best to explore using the joystick
control by himself. Questions:

• Do you feel that you understand the control
mechanism? (Y/N)

• Do you feel that you can use the control mech-
anism? (Y/N)

3. Word processing using Microsoft Word (15 min-
utes): Each user typed in a non-technical document
with limited formatting.

• Sub-task I: Comfort (5 minutes) The user
was told to try to find a joystick setting that
he felt was comfortable for him. Questions:

– Did you find that the joystick control was
understandable in this application? (Y/N)

– Were you able to find a setting that was
comfortable? (Y/N)

• Sub-task II: Comfort and Cost (5 minutes)
The user was given a cost bar (Figure 2(a)) that
showed the current cost of using the Windows
VM. When the user moved the joystick, both
the responsiveness of the computer and cur-
rent cost change. The proctor asked the user
to do their best to find a comfortable joystick
setting that was of the lowest cost. Questions:

– Did you find that the joystick control was
understandable in this application? (Y/N)

– Were you able to find a setting that was
comfortable? (Y/N)

– If yes, what’s the cost?

• Sub-task III: Comfort and Cost With Per-
ceived External Observation (5 minutes)
This sub-task was identical to the previous
one, except that the proctor told the user that
the system had mechanisms by which it could
independently determine whether the user was
comfortable or not and whether a comfort-
able setting was of the lowest possible cost.
It was claimed that this analysis was achieved
through measurement of the efficiency of the
VM (the percentage of cycles that the user has
allocated that he is actually using), analysis
of their mouse, keyboard, and joystick input,
and psychological analysis of the video tape.
Questions:

– Did you find that the joystick control was
understandable in this application? (Y/N)

– Were you able to find a setting that was
comfortable? (Y/N)

– If yes, what’s the cost?

4. Presentation creation using Microsoft Powerpoint
(15 minutes): Each user duplicated a presentation
consisting of complex diagrams involving drawing
and labeling from a hard copy of a sample presenta-
tion.

• The same three sub-tasks as for word process-
ing with the same questions following each
sub-task.

6

5. Browsing and research with Internet Explorer (15
minutes): Each user was assigned a news web site
and asked to read the first paragraphs of the main
news stories. Based on this, they searched for re-
lated material and saved it. This task involved mul-
tiple application windows.

• The same three sub-tasks as for word process-
ing with the same questions following each
sub-task.

6. Playing Quake II (15 minutes)

• The same three sub-tasks as for word process-
ing with the same questions following each
sub-task.

The written protocol and the form the user filled out are
available from the authors by request.

As the user performed the tasks, we recorded the fol-
lowing information:

• Periodic measurements of system and user time,

• Periodic measurements of utilization (portion of the
allotted time that was spent unblocked), and

• For each joystick event, the time stamp and the new
(period , slice) and cost .

The user was unaware of the recording process. He saw
only the cost of the current schedule.

6.3 Qualitative results

Our users interacted with the system in many different
ways. No classification scheme seems obvious other than
the extent to which they manipulated the joystick (both
the number of times and the range covered.) Recall that
after moving the joystick, the user needs to return to the
application to test the new schedule’s effects on its per-
formance. However, to explore the effect on cost, the
user has immediate feedback in the form of the on-screen
meter (Figure 2(a)). We present the traces of three users
as examples of different ways of interacting with the sys-
tem, ranging from focusing first on the cost to focusing
primarily on the comfort of the application.

Figure 3 shows the behavior of a user primarily search-
ing for low cost. Recall that at the beginning of each task
and subtask, the joystick was recentered, corresponding
to a 500 ms period with a 50% utilization. Each row of
graphs in the figure represents the behavior for a single
application (specifically, sub-task III in the task). Within
a row, the left hand graph shows the track of the user’s
joystick over time, the horizontal axis being the period ,
while the vertical axis is the utilization (slice

period). The top

right corner of the graph has highest performance (small-
est period, highest utilization), while the bottom left has
the lowest performance (largest period, smallest utiliza-
tion). The right hand graph shows the cost of the sched-
ule over time. Note that because the cost is dominated by
utilization, there are flat regions. These are typically due
to a user changing the period while keeping the utiliza-
tion constant.

Note that the user of Figure 3 is hunting through the
space, smoothly changing the joystick to look for bet-
ter prices. This is particularly evident in Figure 3(g),
where the user eventually discovers he can tolerate a
much lower utilization (and thus cost) in the game if he
uses a very small period.

The user of Figure 4 spends less time hunting for a low
cost and more time finding comfortable settings. Also,
we notice that unlike the previous user, this one needs
high utilization for the game, even though he tried a small
period as well. In general this user has optimized for a
more costly machine than the previous user.

Figure 5 is a user who is optimizing for comfort. He
is carefully moving the joystick, and then testing the new
schedule’s impact on the application for a while before
moving it again. Because this takes time, only a few
movements are recorded. Probably the most significant
movement from the initial position (500 ms period, 50%
utilization) is in the case of the game, where the user
slowly shrinks the period and increases utilization until
it plays comfortably for him. Notice that because the
game action continues even if the user is not playing, the
effects can be seen almost immediately.

For this last user, Figure 6 shows the cost and effi-
ciency as a function of time, where the efficiency is the
ratio of the actual time used by the VM (system and user
time) to the amount of time it was allotted. Ideally, at
the lowest cost at which the user feels comfortable, the
efficiency should be very high. However, this is clearly
not possible since the user cannot modify his schedule
continuously and still use the application. Hence, the
user will generally choose to have a certain amount of
“buffering” in his schedule to accommodate bursts of
computation. From the figures we can see that the less
CPU intensive an application is, the lower the efficiency.
Applications like Word, Powerpoint and IE don’t need a
continuous allocation of the CPU, but nonetheless need
to be quickly scheduled when a user event occurs. A cer-
tain percentage of the unused slice serves as the “buffer”
to make user feel comfortable. The user can shrink this
buffer as close to the limit as he can tolerate.

The exception is the game. Quake, like many first per-
son shooter games, simply tries to run with as high a
frame rate as possible. Whatever schedule is chosen, the
efficiency is very high since all of the slice is consumed.
Here, the user is indirectly controlling the frame rate and

7

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(a) Word (track) (b) Word (cost v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(c) Powerpoint (track) (d) Powerpoint (cost v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(e) Web (track) (f) Web (cost v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(g) Game (track) (h) Game (cost v. time)

Figure 3: User A: Tracks, cost versus time.

jitter of the application.

6.4 Quantitative results

Figure 7 summarizes the responses of users to the ques-
tions in our study, providing 95% confidence intervals for
the proportion of users who responded in the affirmative.
Notice that in all cases, the responses allow us to dis-
count the null hypothesis, that the users are responding
randomly, with > 95% confidence.

The overwhelming majority of users found that they

• understood our control mechanism,

• could use it to find a comfortable position, and

• could use to find a comfortable position that they
believed was of lowest cost.

Despite the disparity among the applications and the
users, there was little disparity in the users’ reactions.
There were only two situations where a significant frac-
tion of the users had difficulty finding a comfortable or
comfortable and low-cost setting. 28% of users had diffi-
culty finding a comfortable setting for the web browsing
task (sub-task I), while 22% had difficulty finding a com-
fortable, low cost setting for the first person shooter task
(sub-task II). In both cases, the numbers result from one
of the users answering the question unintelligibly. Fur-
thermore, that user answered “yes” to the more restric-
tive corresponding question (where we are attempting to
deceive him into believing we can answer the question

8

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(a) Word (track) (b) Word (cost v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(c) Powerpoint (track) (d) Powerpoint (cost v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(e) Web (track) (f) Web (cost v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(g) Game (track) (h) Game (cost v. time)

Figure 4: User B: Tracks, cost versus time.

independently).
For sub-tasks II and III of each task, we had the user

try to find a setting that he was comfortable with and that
he believed was of minimal cost. If he felt he had found
a comfortable setting, we recorded its cost. Figure 8 pro-
vides the statistics for these costs. We can see that:

• As we might expect, costs, on average increase as
we look at applications with increasingly finer grain
interactivity.

• There is tremendous variation in acceptable cost
among the users. The standard deviation is nearly
half of the average cost. The maximum cost is as
much as five times the minimum cost. This should
not be surprising given the wide variation among

users found in a previous study of resource borrow-
ing (Section 3).

• Nonetheless, almost all users were able to find a set-
ting that gave them comfortable performance.

Figure 9(a) shows the statistics, aggregated across the
users, on the duration from the beginning of sub-tasks
II and III of each task to the time that the lowest cost
was first encountered. For example, to compute the “Av-
erage” statistic for “Word III”, we examined each user’s
trace to find the time from the beginning of sub-task III of
the Word task to the time when the user’s reported low-
est comfortable cost was first found. We then averaged
these times. The other statistics are computed similarly.
Figure 9(b) shows identical statistics for the duration to
the last time the lowest cost occurred. Note that one of

9

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(a) Word (track) (b) Word (cost v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(c) Powerpoint (track) (d) Powerpoint (cost v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(e) Web (track) (f) Web (cost v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 200 400 600 800 1000

U
t
i
l
i
z
a
t
i
o
n

(
%
)

Period (millisec)

Utilization v.s Period

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t

(
$
)

Time (sec)

Cost v.s Time

(g) Game (track) (h) Game (cost v. time)

Figure 5: User C: Tracks, cost versus time.

durations slightly exceeds 300 s due to no movement of
the joystick at the end of a sub-task that was terminated
in slightly more than 5 minutes.

We can see that the median time for the user to find
the setting of lowest cost that is comfortable for him is
in the range from 25-60 seconds. Notice that this time
includes use of the application. The user does a quick
manipulation of the joystick and then tries to use the ap-
plication for a short while with the new setting. Recall
that these times are for the first 10 minutes that the user
has been introduced to the combination of the applica-
tion and scheduling interface. One would expect that the
times would decline as familiarity increases.

The upshot of the study described in this section is that
we have identified a practical mechanism by which user

input can be incorporated into the CPU scheduling pro-
cess for Virtuoso. Using that input, the system can adapt
the schedule of the user’s VM to fit the user and the ap-
plication he is currently running, the side effect of which
is that the system can run more interactive users simul-
taneously, or allocate more time for long-running batch
VMs. The user can quickly guide the system to a sched-
ule that simultaneously optimizes both for his comfort in
using an application and for low cost.

7 Issues in extension

Having demonstrated the feasibility and utility of direct
user feedback as applied to CPU scheduling for interac-
tive VMs, we now describe issues in extending our ideas

10

Task Sub-task Question Yes No NA Yes/Total 95% CT

Do you feel you are familiar with the performance of this computer? 18 0 0 1 (1,1) Adaptation I

Are you comfortable with these applications? 17 1 0 0.94 (0.84, 1.05)

Do you feel that you understand the control mechanism? 18 0 0 1.00 (1,1)

Acclim.

Adaptation II

Do you feel that you can use the control mechanism? 18 0 0 1.00 (1,1)

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05) I Comfort

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1)

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05) II Comfort+Cost

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1)

Did you find that the joystick control was understandable in this task? 18 0 0 1.00 (1,1)

Word

III Comfort+Cost+Ext

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1)

Did you find that the joystick control was understandable in this task? 16 2 0 0.89 (0.74, 1.03) I Comfort

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1)

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05) II Comfort+Cost

Were you able to find a setting that was comfortable? 17 1 0 0.94 (0.84, 1.05)

III Comfort+Cost+Ext Did you find that the joystick control was understandable in this task? 16 1 0 0.89 (0.74, 1.03)

Powerpoint

 Were you able to find a setting that was comfortable? 17 1 0 0.94 (0.70, 1.08)

Did you find that the joystick control was understandable in this task? 16 2 0 0.89 (0.74, 1.03) I Comfort

Were you able to find a setting that was comfortable? 13 4 1 0.72 (0.52, 0.93)

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05) II Comfort+Cost

Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03)

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)

Web

III Comfort+Cost+Ext

Were you able to find a setting that was comfortable? 16 1 1 0.89 (0.74, 1.03)

Did you find that the joystick control was understandable in this task? 18 0 0 1.00 (1, 1) I Comfort

Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03)

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05) II Comfort+Cost

Were you able to find a setting that was comfortable? 14 3 1 0.78 (0.59, 0.97)

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)

Game

III Comfort+Cost+Ext

Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03)

Figure 7: Summary of user responses in study.

to other domains. Our thinking is also informed by two
additional domains. First, we have applied our approach
to power management on laptop computers, demonstrat-
ing CPU power reductions of > 20%. Second, we have
been working on the general adaptation problem exposed
within the Virtuoso system [43, 42, 15].

Virtuoso provides many adaptation and resource reser-
vation mechanisms to improve the performance of exist-
ing, unmodified applications running in communicating
VMs. These include VM migration and overlay topology
configuration/forwarding rules [41], lightpath setup in
optical networks [21], and local scheduling of VMs [22].
Additionally, Virtuoso can observe the network and host
traffic of the VMs to probe the underlying network [15]
and the application [13] for their communication topol-
ogy and other resource demands [42]. Using this infor-
mation to engage the adaptation and reservation mecha-
nisms to increase an application’s performance is a chal-
lenging, NP-hard optimization problem [43], one that is
often difficult even to pose well. Applying our concept of
direct human input to it poses the following challenges.

Frequency of input: In each of our domains, we have
noted that more frequent user input leads to better per-
formance (lower cost, lower power consumption, high
application throughput, among other metrics). However,

it is obvious that there must be limits to this frequency.
Control algorithms that make use of direct user input
must be able to work when the input is infrequent and/or
aperiodic. In our view, sensible low-frequency input will
take one of three forms:

1. Evaluations of a current configuration or SLA, re-
sulting in user-specific utility functions.

2. Specifications of configurations or SLAs.

3. Directions for search within a space of configura-
tions or SLAs.

The work described here takes the later two forms.
Interface: Careful user interface design and evalu-

ation are critical to success, especially when targeting
naive users. We have generally found that having a very
simple, tactile interface separate from the “main” user in-
terface of the application or OS, is preferable because it
clearly demarcates “system” control from “application”
control in the user’s mind, can be completely ignored
when not needed, and is easier to explain. Designing an
adequate process for acquiring exploiting input of form
1 is far easier than for forms 2 and 3. We next describe
specific issues related to the latter forms.

11

Task Sub-task Question Avg Std Min Max Med Mod

Did you find that the joystick control was understandable in this task?

 Were you able to find a setting that was comfortable?

 II Comfort+Cost

 If yes, what’s the cost? 46.0 20.4 19 86 40.5 40

Did you find that the joystick control was understandable in this task?

 Were you able to find a setting that was comfortable?

Word

III Comfort+Cost+Ext

 If yes, what’s the cost? 48.4 20.7 19 84 48 19

Did you find that the joystick control was understandable in this task?

 Were you able to find a setting that was comfortable?

 II Comfort+Cost

 If yes, what’s the cost? 52.4 19.5 20 91 45 62

Did you find that the joystick control was understandable in this task?

 Were you able to find a setting that was comfortable?

Powerpoint

III Comfort+Cost+Ext

 If yes, what’s the cost? 52.3 19.2 18 87 50 38

Did you find that the joystick control was understandable in this task?

 Were you able to find a setting that was comfortable?

 II Comfort+Cost

 If yes, what’s the cost? 49.6 22.7 15 90 47 41

Did you find that the joystick control was understandable in this task?

 Were you able to find a setting that was comfortable?

Web

III Comfort+Cost+Ext

 If yes, what’s the cost? 50.2 23.3 16 87 50 28

Did you find that the joystick control was understandable in this task?

 Were you able to find a setting that was comfortable?

 II Comfort+Cost

 If yes, what’s the cost? 78.8 14.1 50 93 84.5 90

Did you find that the joystick control was understandable in this task?

 Were you able to find a setting that was comfortable?

Game

III Comfort+Cost+Ext

 If yes, what’s the cost? 76.5 14.9 49 91 81 81

Figure 8: Statistics of the lowest costs reported by users in study.

Mechanism transition: In our system, changing a
VM’s schedule is virtually instantaneous, if the schedule
is feasible on the physical host it is currently running on.
If the desired schedule is not feasible, we must indicate
this to the user and use a different mechanism (e.g., mi-
grate his VM to a different host) to satisfy him. While
very fast VM migration techniques now exist [7, 30],
they still take much longer than changing a schedule, and
have a much higher resource cost. How can we represent
these time and resource costs to the user?

Categorical dimensions: A configuration or SLA can
be thought of as a point within a multidimensional space.
If a dimension is categorical (for example, a VM can be
mapped to one of several choices, or a overlay link can
be added or not), it is difficult to present it using an easily
understood external interface.

Dimensionality: In the present work, we expose the
schedule directly to the user. This is easy to do because
its two dimensions map directly to the two dimensions
of the joystick, and both dimensions are continuous. As
we add resources, the number of dimensions grows and
makes a simple mapping impossible. Of course, there
are many examples of using low dimensional input de-
vices to explore high dimensional spaces. A large part
of the problem is how to visualize the current configura-
tion/SLA and its neighborhood.

8 Conclusions and future work

We have described and evaluated a technique for putting
even naive users in direct, explicit control of the schedul-
ing of their interactive computing environments through
the combination of a joystick and an on-screen display of
cost. In so doing, we have demonstrated that with such
input it is possible and practical to adapt the schedule
dynamically to the user, letting him trade off between
the comfort of the environment and its cost. Because the
tolerance for cost and the comfort with a given schedule
is highly dependent on both the applications being used
and on the user himself, this technique seems very fruit-
ful both for tailoring computing environments to users
and making them cheaper for everyone.

We are currently exploring how to extend our results to
scheduling other resources, combinations of resources,
and in power management, with a particular focus on the
distributed adaptation problem described in the previous
section.

References

[1] BALAN, R. K., GERGLE, D., SATYANARAYANAN, M.,
AND HERBSLEB, J. Simplifying cyber foraging for mo-
bile devices. Tech. Rep. CMU-CS-05-157, Computer

12

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t
(
$
)

&

E
f
f
i
c
i
e
n
c
y
(
%
)

Time (sec)

Cost v.s Efficiency over time

efficiency cost

Word (cost, efficiency v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t
(
$
)

&

E
f
f
i
c
i
e
n
c
y
(
%
)

Time (sec)

Cost v.s Efficiency over time

efficiency cost

Powerpoint (cost, efficiency v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t
(
$
)

&

E
f
f
i
c
i
e
n
c
y
(
%
)

Time (sec)

Cost v.s Efficiency over time

efficiency cost

Web (cost, efficiency v. time)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0 50 100 150 200 250 300

C
o
s
t
(
$
)

&

E
f
f
i
c
i
e
n
c
y
(
%
)

Time (sec)

Cost v.s Efficiency over time

efficiency cost

Game (cost, efficiency v. time)

Figure 6: User C: Cost, efficiency versus time.

Science Department, Carnegie Mellon University, August
2005.

[2] BANSAL, N., AND HARCHOL-BALTER, M. Analysis
of srpt scheduling: Investigating unfairness. In Proceeds
of the 2001 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems
(2001), pp. 279–290.

[3] BENNETT, J., AND ZHANG, H. Worst-case fair weighted
fair queueing. In Proceedings of IEEE INFOCOM 1996
(March 1996), pp. 120–127.

[4] BHOLA, S., AND AHAMAD, M. Workload modeling for
highly interactive applications. In ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems (1999), pp. 210–211. Extended version as Tech-

(a) Duration to first encounter of lowest cost

(b) Duration to last encounter of lowest cost

Figure 9: Duration to lowest cost.

nical Report GIT-CC-99-2, College of Computing, Geor-
gia Tech.

[5] BOWMAN, H., BLAIR, L., BLAIR, G. S., AND

CHETWYND, A. G. A formal description technique sup-
porting expression of quality of service and media syn-
chronization. In Proceedings of the International COST
Workshop (November 1994), no. 882 in Lecture Notes in
Computer Science, Springer, pp. 145–167.

[6] CHU, H.-H., AND NARHSTEDT, K. Cpu service classes
for multimedia applications. In Proceedings of the IEEE
International Conference on Multimedia Computing and
Systems (June 1999).

[7] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G.,
JUL, E., LIMPACH, C., PRATT, I., AND WARFIELD, A.
Live migration of virtual machines. In Proceedings of the
Symposium on Networked Systems Design and Implemen-
tation (NSDI) (2005).

[8] DOURISH, P. Evolution in the adoption and use of col-
laborative technologies. In Proceedings of the ECSCW
Workshop on the Evolving Use of Groupware (September
1999).

[9] DUDA, K. J., AND CHERITON, D. R. Borrowed-virtual-
time (bvt) scheduling: supporting latency-sensitive
threads in a general-purpose scheduler. In SOSP ’99: Pro-
ceedings of the seventeenth ACM symposium on Operat-
ing systems principles (1999), ACM Press, pp. 261–276.

[10] EMBLEY, D. W., AND NAGY, G. Behavioral aspects
of text editors. ACM Computing Surveys 13, 1 (January
1981), 33–70.

13

[11] ENDO, Y., WANG, Z., CHEN, J. B., AND SELTZER, M.
Using latency to evaluate interactive system performance.
In Proceedings of the 1996 Symposium on Operating Sys-
tems Design and Implementation (1996).

[12] GOLDBERG, R. Survey of virtual machine research.
IEEE Computer (June 1974), 34–45.

[13] GUPTA, A., AND DINDA, P. A. Inferring the topology
and traffic load of parallel programs running in a virtual
machine environment. In Proceedings of the 10th Work-
shop on Job Scheduling Strategies for Parallel Processing
(JSPPS 2004 (June 2004).

[14] GUPTA, A., LIN, B., AND DINDA, P. A. Measur-
ing and understanding user comfort with resource bor-
rowing. In Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing
(HPDC 2004) (June 2004).

[15] GUPTA, A., ZANGRILLI, M., SUNDARARAJ, A.,
HUANG, A., DINDA, P., AND LOWEKAMP, B. Free net-
work measurement for virtual machine distributed com-
puting. In Proceedings of the 20th IEEE International
Parallel and Distributed Processing Symposium (IPDPS)
(2006).

[16] HOOVER, C., HANSEN, J., KOOPMAN, P., AND TAM-
BOLI, S. The amaranth framework: Policy-based qual-
ity of service management for high-assurance computing.
International Journal of Reliability, Quality, and Safety
Engineering (December 2001).

[17] JONES, M., ROSU, D., AND ROSU, M.-C. Cpu reserva-
tions and time constraints: Efficient, predictable schedul-
ing of independent activities. In Proceedings of the 16th
ACM Symposium on Operating System Principles (SOSP)
(1997).

[18] KLEIN, J. T. Computer response to user frustration. Mas-
ter’s thesis, Massachusetts Institute of Technology, 1999.

[19] KOMATSUBARA, A. Psychological upper and lower lim-
its of system response time and user’s preferance on skill
level. In Proceedings of the 7th International Confer-
ence on Human Computer Interaction (HCI International
97) (August 1997), G. Salvendy, M. J. Smith, and R. J.
Koubek, Eds., vol. 1, IEE, pp. 829–832.

[20] LAI, A., AND NIEH, J. Limits of wide-area thin-client
computing. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems (2002).

[21] LANGE, J., SUNDARARAJ, A., AND DINDA, P. Auto-
matic dynamic run-time optical network reservations. In
Proceedings of the 14th IEEE International Symposium
on High Performance Distributed Computing (HPDC)
(July 2005), pp. 255–264.

[22] LIN, B., AND DINDA, P. Vsched: Mixing batch
and interactive virtual machines using periodic real-time
scheduling. In Proceedings of ACM/IEEE SC 2005 (Su-
percomputing) (November 2005).

[23] LIU, C. L., AND LAYLAND, J. W. Scheduling algo-
rithms for multiprogramming in a hard real-time environ-
ment. Journal of the ACM 20, 1 (January 1973), 46–61.

[24] LIU, J. Real-time Systems. Prentice Hall, 2000.

[25] LOTLIKA, R., VATSAVAI, R., MOHANIA, M., AND

CHAKRAVARTHY, S. Policy scheduler advisor for perfor-
mance management. In Proceedings of the 2nd IEEE In-
ternational Conference on Autonomic Computing (ICAC)
(June 2005).

[26] LOYALL, J. P., BAKKEN, D. D., SCHANTZ, R. E.,
ZINKY, J. A., KARR, D. A., VANEGAS, R., AND AN-
DERSON, K. R. QoS aspect languages and their runtime
integration. In Proceedings of the 4th Workshop on Lan-
guages, Compilers, and Run-time Systems for Scalable
Computers (LCR) (1998), Springer-Verlag.

[27] MACLEAN, A., CARTER, K., LOVSTRAND, L., AND

MORAN, T. User-tailorable systems: pressing the issues
with buttons. In CHI ’90: Proceedings of the SIGCHI
conference on Human factors in computing systems (New
York, NY, USA, 1990), ACM Press, pp. 175–182.

[28] MCKUSICK, M., BOSTIC, K., KARELS, M., AND

QUARTERMAN, J. The Design and Implementation of
the 4.4BSD Operating System. Addison-Wesley Long-
man, 1996.

[29] NAGARAJA, K., OLIVEIRA, F., BIANCHINI, R., MAR-
TIN, R., AND NGUYEN, T. Understanding and dealing
with operator mistakes in internet services. In Proceed-
ings of the 6th Symposium on Operating Systems Design
and Implementation (OSDI) (December 2004).

[30] NELSON, M., LIM, B.-H., AND HUTCHINS, G. Fast
transparent migration for virtual machines. In Proceed-
ings of the USENIX Annual Technical Conference (2005).

[31] NIEH, J., AND LAM, M. The design, implementation,
and evaluation of SMART: A scheduler for multimedia
applications. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles (October 1997).

[32] NOBLE, B. D., SATYANARAYANAN, M., NARAYANAN,
D., TILTON, J. E., FLINN, J., AND WALKER, K. R. Ag-
ile application-aware adaptation for mobility. In Proceed-
ings of the 16th ACM Symposium on Operating Systems
Principles (1997).

[33] RAJKUMAR, R., LEE, C., LEHOCZKY, J., AND

SIEWIOREK, D. A resource allocation model for QoS
management. In Proceedings of the IEEE Real-Time Sys-
tems Symposium (December 1997).

[34] REYNOLDS, C. J. The sensing and measurement of frus-
tration with computers. Master’s thesis, Massachusetts
Institute of Technology Media Laboratory, 2001.

[35] RICHARDSON, T., STAFFORD-FRASER, Q., WOOD, K.,
AND HOPPER, A. Virtual network computing. IEEE In-
ternet Computing 2, 1 (January/February 1998).

[36] ROMANO, P. Itu-t recommendation t.128 (application
sharing). Tech. rep., ITU, March 1997.

[37] SCHMIDT, B., LAM, M., AND NORTHCUTT, J. The in-
teractive performance of slim: A stateless thin client ar-
chitecture. In Proceedigns of the 17th ACM Symposium
on Operating Systems Principles (SOSP 1999) (Decem-
ber 1999), pp. 32–47.

14

[38] SHOYKHET, A., LANGE, J., AND DINDA, P. Virtu-
oso: A system for virtual machine marketplaces. Tech.
Rep. NWU-CS-04-39, Department of Computer Science,
Northwestern University, July 2004.

[39] STRICKER, L. J. The true deceiver. Psychological Bul-
letin, 68 (1967), 13–20.

[40] STRICKLAND, J., FREEH, V., MA, X., AND VAZHKU-
DAI, S. Governor: Autonomic throttling for aggres-
sive idle resource scavenging. In Proceedings of the 2nd
IEEE International Conference on Autonomic Computing
(ICAC) (June 2005).

[41] SUNDARARAJ, A., AND DINDA, P. Towards virtual net-
works for virtual machine grid computing. In Proceed-
ings of the 3rd USENIX Virtual Machine Research And
Technology Symposium (VM 2004) (May 2004).

[42] SUNDARARAJ, A., GUPTA, A., , AND DINDA, P. In-
creasing application performance in virtual environments
through run-time inference and adaptation. In Pro-
ceedings of the 14th IEEE International Symposium on
High Performance Distributed Computing (HPDC) (July
2005), pp. 47–58.

[43] SUNDARARAJ, A., SANGHI, M., LANGE, J., AND

DINDA, P. An optimization problem in adaptive vir-
tual environments. In Proceedings of the Seventh Work-
shop on Mathematical Performance Modeling and Anal-
ysis (MAMA) (June 2005).

[44] WALDSPURGER, C. A., AND WEIHL, W. E. Lottery
scheduling: Flexible proportional-share resource man-
agement. In Proceedings of the First Symposium on Op-
erating Systems Design and Implementation (1994).

[45] WHITAKER, A., COX, R., AND GRIBBLE, S. Config-
uration debugging as search: Finding the needle in the
haystack. In Proceedings of the 6th Symposium on Op-
erating Systems Design and Implementation (OSDI) (De-
cember 2004).

[46] ZINKY, J. A., BAKKEN, D. E., AND SCHANTZ, R. E.
Architectural support for quality of service for CORBA
objects. Theory and Practice of Object Systems 3, 1 (April
1997), 55–73.

15

